

Application of an in house spectrometer to NH ₃ decom	von Hamos EXAFS position studies
	· · · · · · · · · · · · · · · · · · ·
J.C.A. Camayang	· · · · · · · · · · · · · · · · · · ·
DeBeer Group - MPLCEC Germany	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
lab-X ³ : 3 rd Workshop on High-energy-resolution L	_aboratory X-ray Spectroscopy • • • •
	· · · · · · · · · · · · · · · · · · ·
03.10.2024	· · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OUTLINE

- 1. Overview of NH₃ Decomposition
- 2. EXAFS in Catalysis Research
- 3. In house von Hamos EXAFS spectrometer
- 4. Assessment of current spectrometer performance
 - a) Benchmarking studies
 - b) Impact of detector-related parameters
 - c) Estimation of relative error
 - d) Updates on the *in situ* cell setup
- 5. Summary & Outlook

CATALYTIC NH₃ DECOMPOSITION: OVERVIEW

Energies 2021, 14(13), 3732.

3

CATALYTIC NH₃ DECOMPOSITION: AmmoRef NETWORK

Spectroscopic Technique	Chemical Information	pective
	Local ligand field	a material
XANES	Oxidation state	
	Site symmetry	
	Type of nearest neighbor	
	Near neighbor distances	
EXAFS	Coordination number	
	Thermal vibrations, Static disorder	Spectroscopy
	Ligand identity & nature	
VtC-XES	Ligand-metal bonding	
	Coordination environment	
XRD	Chemical composition	
	Crystal structure	e Sites
	& properties	Vechanisms
NAP-XPS &	Identity of surface species	MECHALISIIIS
NEXAFS	Surface oxidation state	

EXAFS IN CATALYSIS RESEARCH

Chemical Information	
Local ligand field	
Oxidation state	
Site symmetry	
Type of nearest neighbor	
Near neighbor distances (R)	
Coordination number (N)	
Thermal vibrations,	
Static disorder (^{o²)}	

- Sensitive to short range structural order.
- Can accommodate wide range of sample types (e.g., liquids, <u>amorphous solids</u>).
- ∴ EXAFS can serve as a complementary technique to X-ray diffraction.

Extended X-ray absorption fine structure

EXAFS IN CATALYSIS RESEARCH

Spectroscopic Technique	Chemical Information	
	Local ligand field	
XANES	Oxidation state	
	Site symmetry	
EXAFS	Type of nearest neighbor	
	Near neighbor distances (R)	
	Coordination number (N)	
	Thermal vibrations, Static disorder (^{o2})	

- > Sensitive to short range structural order.
- Can accommodate other sample types (e.g., liquids, <u>amorphous solids</u>).
- ∴ EXAFS can serve as a complementary technique to X-ray diffraction.

Why EXAFS in NH₃ decomposition?

- starting materials undergo reconstruction during activation/pre-treatment[‡]
 - $MgFe_2O_4 \mapsto Fe/MgO$
 - MgFeCoO₄ \mapsto FeCo/MgO
- bulk nitride formation can occur during reaction[§]
 - $Fe \mapsto Fe_x N_y$ (e.g., ϵ -Fe₃N_{1+z}, γ -Fe₄N_{1-z})

[‡] Nat. Commun., **2024**, *15*, 871.

§ Ind. Eng. Chem. Res., **2021**, *60*, 18560–18611.

LABORATORY-BASED EXAFS

In house von Hamos spectrometer at MPI CEC

Spectrochim. Acta Part B: At. Spectrosc., 2021, 177, 106101.; Naturwissenschaften, 1932, 20, 705–706.; J. Appl. Cryst., 1988, 21, 79.

LABORATORY-BASED EXAFS

Advantages of the von Hamos geometry's broad E_{window}

 \mathbb{R} : smallest distance between two scattering shells that can be resolved

2.0

– NMC811
– NMC622

6

Ni K-edge

PROJECT OBJECTIVES

Asessment of spectrometer performance.

Optimization of spectrometer properties and spectrometer calibration.

Design of sample environment for *in situ* studies.

Benchmarking laboratory measurements to synchrotron data

Benchmarking laboratory measurements to synchrotron data

Benchmarking laboratory measurements to synchrotron data

Co K-edge of CoFe/NDC catalyst (as prepared)

‡ from EXAFS fitting of Co foil measured at the P65 Beamline and at MPI CEC

8

Benchmarking laboratory measurements to synchrotron data

Parameter	P65 Beamline	MPI CEC
S ₀ ²	0.80 ± 0.05	0.48 ± 0.09
r-factor	0.0215	0.0344
ΔE_0 (eV)	9.832 ± 0.869	10.657 ± 1.269
N _{Co-Fe}	6.4 ± 0.9	5.9 ± 1.2
N _{Co-Co}	4.2 ± 0.7	3.7 ± 2.8
N _{Co-Fe-Fe}	78.3 ± 22.7	62.5 ± 15.6
N _{Co-Co'}	6.4 ± 1.9	9.3 ± 1.5
N _{Co-Fe} '	20.8 ± 3.8	18.7 ± 2.7
N _{Co-Fe-Co-Fe}	9.2 ± 3.1	7.4 ± 4.5
R _{Co-Fe} (Å)	2.48(5)	2.49(9)
R _{Co-Co} (Å)	2.86(5)	2.88(7)
R _{Co-Fe-Fe} (Å)	3.91(8)	3.94(2)
R _{Co-Co'} (Å)	4.05(8)	4.07(6)
R _{Co-Fe} ' (Å)	4.75(9)	4.79(2)
R _{Co-Fe-Co-Fe} (Å)	4.94(9)	4.98(7)
σ ² (s.s)	0.0047(9)	0.0058 ± 0.023
σ ² (n.l.s)	0.0074(1)	0.0088 ± 0.014
σ ² (m.s)	0.0056(2)	0.0126 ± 0.011

Benchmarking laboratory measurements to synchrotron data

 \therefore S₀² and overall shape of the EXAFS data dictate the degree of similarity of extracted chemical information from SR and lab measurements.

J. Anal. At. Spectrom. **2020**, *35*, 2298.

MPICEC | J.C.A. CAMAYANG | APPLICATION OF AN IN HOUSE VON HAMOS EXAFS SPECTROMETER TO NH3 DECOMPOSITION STUDIES

mp]

\therefore orientation has minimal impact on S₀² and overall shape of EXAFS

Impact of detector-related parameters to S_0^2 and overall shape of EXAFS.

• focal energy (E_0)

\therefore E₀ has moderate impact on S₀² and overall shape of EXAFS but <u>no trend is observed</u>

Impact of detector-related parameters to S_0^2 and overall shape of EXAFS.

Solid State Ionics, 1985, 16, 55-64.

J.Grage, MS Thesis, TU Berlin, 30.04.2024

Next step: Deconvolution Studies

Open questions:

- > Does deconvolution improve the <u>benchmarking results</u>?
- ➤ How does the <u>nature of sample</u> influence the results of deconvolution?
- > What instrument-related factors (e.g., E_0 , $t_{measurement}$) impact the convolution function?
- > What does the convolution function represent?

Estimation of measurement time for in situ experiments

13

SUMMARY AND OUTLOOK

>Lab-EXAFS in NH₃ decomposition: bulk structural changes on the catalyst

- Benchmarking with SR data: within a limited fitting window
- >Detector-related parameters: no significant impact to S_0^2 and overall shape

>Deconvolution studies: improve data reliability? applicable to wider range of samples?

> In situ cell setup: commissioning measurements to follow

SUMMARY AND OUTLOOK

 \succ Lab-EXAFS in NH₃ decomposition: bulk structural changes on the catalyst

- Benchmarking with SR data: within a limited fitting window
- >Detector-related parameters: no significant impact to S_0^2 and overall shape

- >Deconvolution studies: improve data reliability? applicable to wider range of samples?
- > In situ cell setup: commissioning measurements to follow

ACKNOWLEDGMENTS

Thank you for your kind attention!

Questions, comments, and suggestions are more than welcome.

- Serena DeBeer
- Yves Kayser
- Liqun Kang
- **Christian Feike**
- Philipp Manthey

Michael Poschmann

- Edmund Welter
- **Regina Biller**
- Claudia Schwan
- Tinku Dan

- Christopher Schlesiger
- Birgit Kanngießer
- Wolfgang Malzer
- Jonas Grage