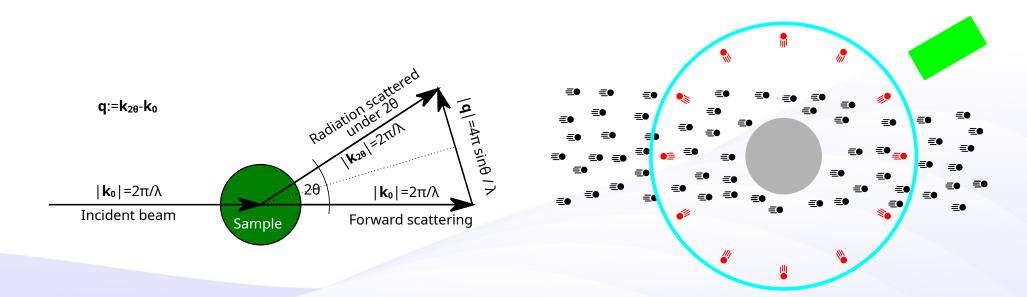


Adapting Data Acquisition Strategies from Large-Scale Facilities – Or How to Dance in the Lab?

András Wacha

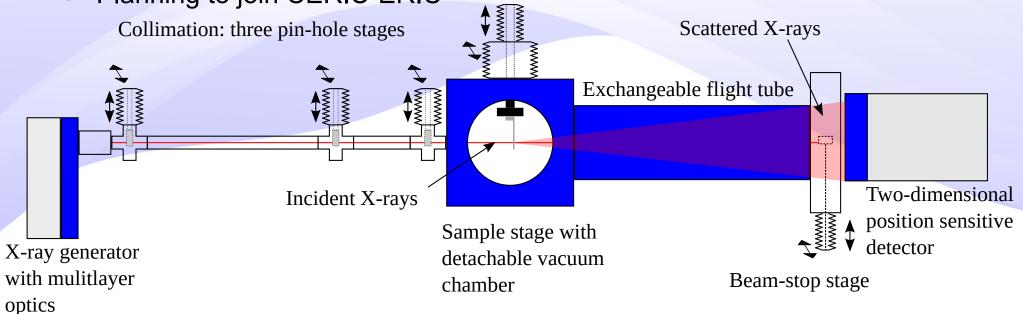
Centre of Excellence



Motivation: Why do we need data acquisition strategies?

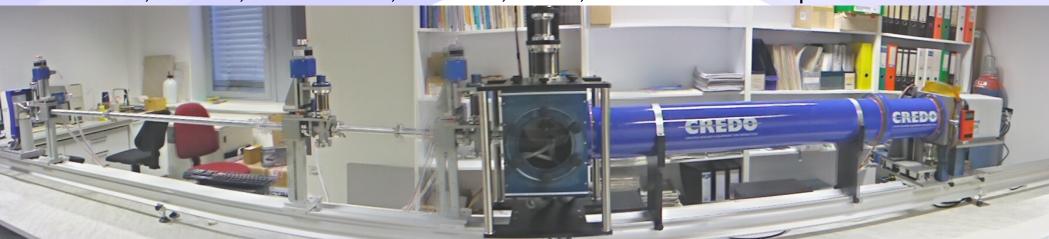
- Computerized measurements: possibilities and liabilities
 - Frequent recording of the measurand
 - Automation (sample, geometry or "environment" changes)
 - Easier storage, data is ready for reduction, interpretation...
- The requirement for reproducibility and correctness
 - Recording as many aspects of the experiment as possible (or necessary)
 - Eliminating uncontrolled parameters
 - Repeating experiments under the same conditions
- Data storage considerations
 - Safe (against data loss or corruption)
 - Secure (access control, privacy)
 - Short term / long term
 - Raw or processed data
 - Open data, FAIR principles
- "Do not reinvent the wheel!"
 - Build on already developed and proven utilities and techniques
 - Each experimental field has its own "best practices" and "publication guidelines"

Case study: small-angle X-ray scattering

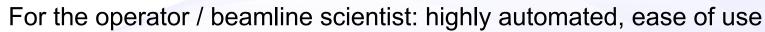

Small-angle X-ray scattering – from the experimentalist's point of view

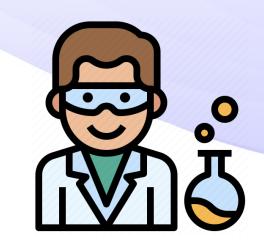
- Fixed wavelength, moderate monochromaticity ($\Delta\lambda/\lambda < 1\%$), highly parallel
- Physics: elastic scattering
- Primary data: "count rate" vs. "scattering angle"
- Instrument-independent units
 - Differential scattering cross-section (" $d\sigma/d\Omega$ ", cm²/cm³ × sr⁻¹)
 - Momentum transfer ("q", nm⁻¹)
- Typically two-dimensional detector, scattering pattern
- Stationary geometry, data acquisition for several minutes/hours (lab), few msecs (synchrotron)

The CREDO instrument

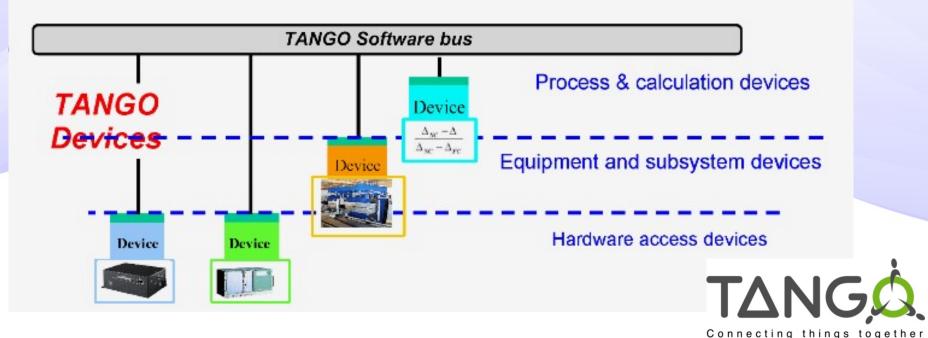

- In-house built laboratory SAXS camera (\rightarrow ask me for a tour in the lab)
 - Based on synchrotron experience
- Optimized three-pinhole collimation system
- Wide angular range from 0.02 to 30 nm⁻¹ ($q=4\pi \sin(\theta)/\lambda$)
- Extensively motorized (XY for pin-holes, sample and beam stop)
- Unique in the region
 - Only SAXS instrument in Hungary
 - Serves all researchers in-house (including other groups)
 - Access for guest researchers via a beamtime proposal system
 - Planning to join CERIC-ERIC

The CREDO hardware


- Core components
- Source: GeniX^{3D} Cu ULD (Xenocs SA, Sassenage, France)
- Detector: Pilatus-300k (Dectris Ltd, Baden, Switzerland) \rightarrow 0.3 Mpixel
- Stepper motor controllers (Trinamic GmbH, now Analog Devices)
- Vacuum gauge: TPG-201 (Pfeiffer Vacuum)
- Thermometer (SE521)
- In situ measurements
- Thermostating water circulator (Haake Phoenix P25C)
- Peristaltic pump (LeadFluid BT100s)
- Sample illumination (Schott KL2500)
- Magnetic stirrer (IKA RET control-visc)
- Other
 - Uninterruptible Power Supply (Tecnoware Evo DSP Plus)
 - Detector gas supply sensor (In-house built, Raspberry-Pi-based)
- RS-232, RS-485, Modbus-TCP, USB HID, TMCL, and other domain-specific solutions


Designing a data acquisition system

Requirements towards the control and data acquisition system


- For the developer: easy to extend
 - flexible enough to accommodate heterogeneous equipment
 - Specification always change
 - Modular: devices can be inserted and removed
 - Developing drivers for new devices should be easy
 - Build on already available solutions
 - Free software vs. paid solutions?

- Perform required background and calibrant measurements
- Measure multiple samples in a sequence
- Standardized procedures (data acquisition, reduction)
- For the casual user / guest researcher: reliable, correct
 - Control *in situ* parameters (temperature, shear, illumination, flow rate...)
 - In-process visualization and assessment of the quality of the results
 - User-friendly
 - Standards-compatible data storage
 - High throughput



- Developed initially at ESRF (Grenoble), then by the Tango Controls Consortium: ESRF, DESY, ALBA, SOLEIL, ELETTRA, SOLARIS, ELI BEAMS, MAX-IV, FRM-II, ...
- A "software bus": a standardized way of communication between various parts of the instrument
- Unified interface: hiding how the equipments are connected (USB, TCP/IP, RS-232...) and where (individual computers on the network)
- Distributed: devices can be attached anywhere, even relocated
- Object-oriented approach (CORBA: Common Object Request Broker Architecture™)

The Tango Architecture

- Basic unit: device
 - Device server: a program managing various devices of the same type ("device class")
 - Not just hardware devices:
 - Algorithms (data reduction, file writer, loggers, software subsystems)
 - Meta-devices (e.g. stepper motors belonging to the same controller)
 - Interfaces (RS232, Modbus, TCP socket...): other device servers may rely on these
- Server code: C++, Java, Python
- Client code: C++, Java, Python, Matlab, Igor Pro, Labview...

The TANGO device: living inside the device server

- Name: <domain>/<family>/<member>
 - e.g., <beamline>/<equipment type>/<equipment name>
 - credo/detector/pilatus300k
 - e.g., <interface type>/<computer>/<equipment name>
 - serial/credo-pi/thermostat, motor/beamstopcontroller/bsx
- Object-oriented approach
 - Class: the type of equipment it controls (e.g. a Haake Phoenix P25C thermostat via RS-232)
 - Attributes: state variables
 - Read-only (current temperature, current motor speed)
 - Read/write (temperature set point, target motor position)
 - 0-1-2 dimensional
 - Commands ("methods" in the C++ terminology): operations that can be performed
 - e.g. open the beam shutter, start water circulation...
 - Properties: parameters and settings not expected to change
 - Hardware address of the device
 - Pipes: transferring a large amount of data

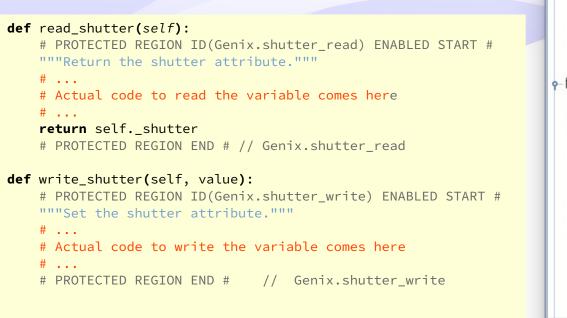
Anatomy of a TANGO device: the X-ray source of CREDO

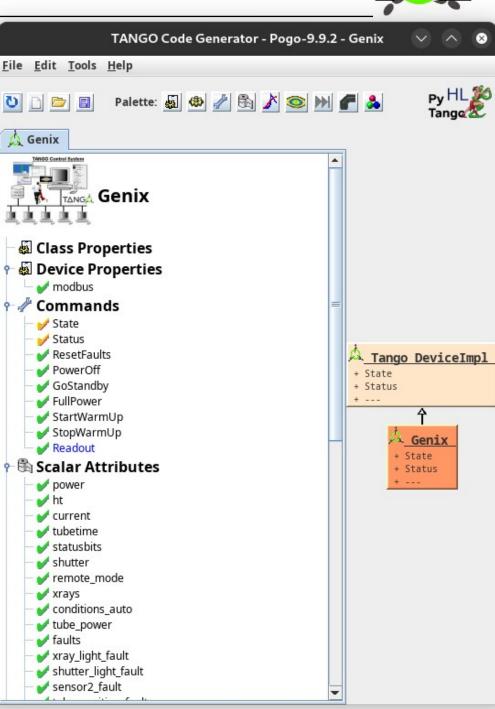
- credo/source/genix (the X-ray source)
 - Properties:
 - modbus: modbus/credo2/genix (another TANGO device!)
 - Attributes:
 - State (common to all TANGO devices: one of ON, OFF, CLOSE, OPEN, INSERT, EXTRACT, MOVING, STANDBY, FAULT, INIT, RUNNING ALARM, DISABLE or UNKNOWN)
 - Status (common to all TANGO devices: a textual representation of the current state)
 - *current*: the actual current in the X-ray tube (mA)
 - ht: high tension of the X-ray tube (kV)
 - vacuum_fault...
 - ...
 - Commands:
 - StartWarmUp, StopWarmUp, FullPower, GoStandby, PowerOff, ResetFaults, ...

DatabaseDS

- One is required for each Tango system (on a dedicated server host)
- Interface to the SQL database
- Provides name resolution: where can the device x/y/z be found?
- Storing information about devices: classes, on which computer they are running, which instances, which device servers, name aliases...
- GUI: Jive

Starter: orchestration


- Not required but very helpful
- Typically on each computer in the Tango system where device servers are running
- Started by the OS
- Responsible for starting, stopping, restarting device servers on this computer (as defined in the database)
- GUI: Astor (*cf* ~ Piazzola)


		~			
👲 🖈	Jive 7.44 [credo2.aki.lan.ttk.hu:10000]	~ ^ X	¥ *	credo2 (Main computer) Control	~ ^ ×]
File Edit Tools Filter					
Device:/credo/source/genix		- I Q	Start N	ew Start All Stop All 🖲 D	Display All
Server Device Class Alias Att. Alias	Property Device Info		16	Controlled Servers on cred	02
- 🗖 nxsdatawriter	Device Info				
nxsrecselector			• Level 1	• Level 2	• Level 3
 peristalticpump samplestore source genix Broperties Polling Event Attribute config Pipe config Attribute properties Logging thermometer 	<pre>Device: credo/source/genix type_id: IDL:Tango/Device_5:1.0 iiop_version: 1.2 host: credo2 (192.168.0.1) alternate addr.: 10.130.133.153 (credo2.aki.1 alternate addr.: 172.17.0.1 port: 41359 Server: Genix/genix Server PID: 2425 Exported: true last_exported: 30th September 2024 at 13:34</pre>	1:36	 CCTDataReduction/credo2 CredoFlags/credo2 LavueController/credo2 Modbus/genix NXSConfigServer/credo2 NXSDataWriter/credo2 Serial/credo Socket/credo2 TangoTest/credo2 	 Genix/genix HaakePhoenixCirculator/credo2 Pilatus/credo2 VoltronicWinnerUPS/credo 	CCTTangoLogger/credo2 Sardana/credo
← ☐ thermostat ← ☐ ups ← ☐ vacuum	Polling Status	5:02	Level 4 SRecSelector/credo2	Not Controlled	
 □ Door □ dserver □ expchan □ logger 				Dismiss	
	Refresh				

Developing Device Servers – Pogo

- Program Obviously used to Generate Objects
- Graphical user interface to define the devices
- Store the data in an XML file
- Writes skeleton code (C++, Java, Python), which can be fleshed out
- Auto-generation of documentation
- XML file can be uploaded to the Tango Classes Catalogue (https://www.tango-cont rols.org/developers/dsc/)

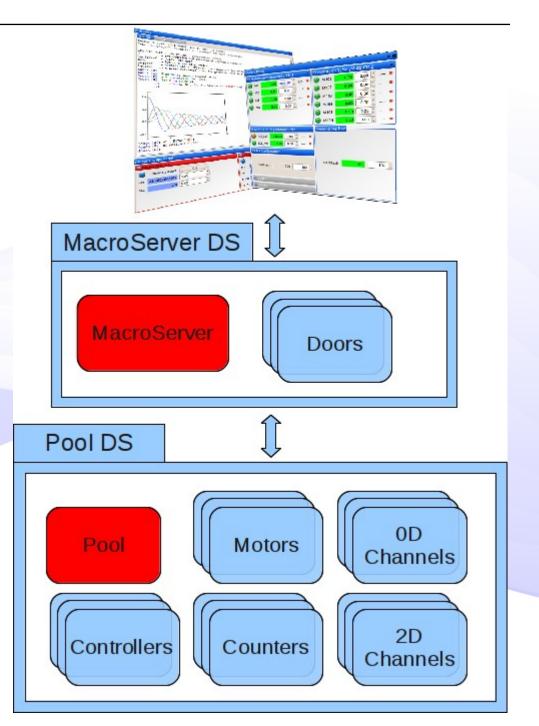
Python Language Bindings

- PyTango (https://pytango.readthedocs.io/en/latest/)
- Object-oriented approach
 - Tango attributes \rightarrow data members
 - Tango commands \rightarrow member functions
- Both for servers and clients
- Introspection
 - get_attribute_list()
 - get_command_list()
- Interaction with the Tango database
- ITango: improved, Tangoaware variant of Ipython


```
In [1]: from tango import DeviceProxy
In [2]: vac = DeviceProxy('credo/vacuum/tpg201')
In [3]: vac.get_attribute_list()
Out[3]: ['pressure', 'version', 'units', 'State', 'Status']
In [4]: vac.pressure
Out[4]: 0.034
In [5]: vac.Status()
Out[5]: '0.034 mbar'
In [6]: genix = DeviceProxy('credo/source/genix')
In [7]: genix.shutter
Out[7]: False
In [8]: genix.shutter = True
In [9]: genix.get_command_list()
Out[9]: ['FullPower', 'GoStandby', 'Init', 'PowerOff', 'Readout',
'ResetFaults', 'StartWarmUp', 'State', 'Status', 'StopWarmUp']
In [10]: genix.PowerOff()
```

Other Uses and Features of TANGO

- Logging facility: messages from the device servers (errors, warnings...)
 - Java GUI: LogViewer
- Polling:
 - automatic, periodic query of attributes (state variables)
 - ... or execution of commands
- Event system
 - Client programs can subscribe to event notifications by the device servers
 - React to changes instantaneously
 - Warning and alarm events
 - Lower and upper thresholds for attribute values
- Archival of attribute values
 - either periodically,
 - ... or upon a large enough change
- Automatic generation of (very basic) overview GUIs for devices (ATK, Synoptic views with JDraw)
- Access control: restrict user access on devices


- Developed principally at ALBA (Barcelona, Spain)
- Aims of the project
 - A further abstraction layer on Tango: controllers and devices
 - Highly flexible and powerful framework for scan measurements
 - Macro server
 - Interactive command line
 - Data recorders: HDF5, SPEC, NeXus
- Sister project: Taurus (https://taurus-scada.org)
 - Creation of full-featured GUIs (forms, plots, controls etc) for data acquisition
 - "Configure instead of coding"

The Sardana Architecture

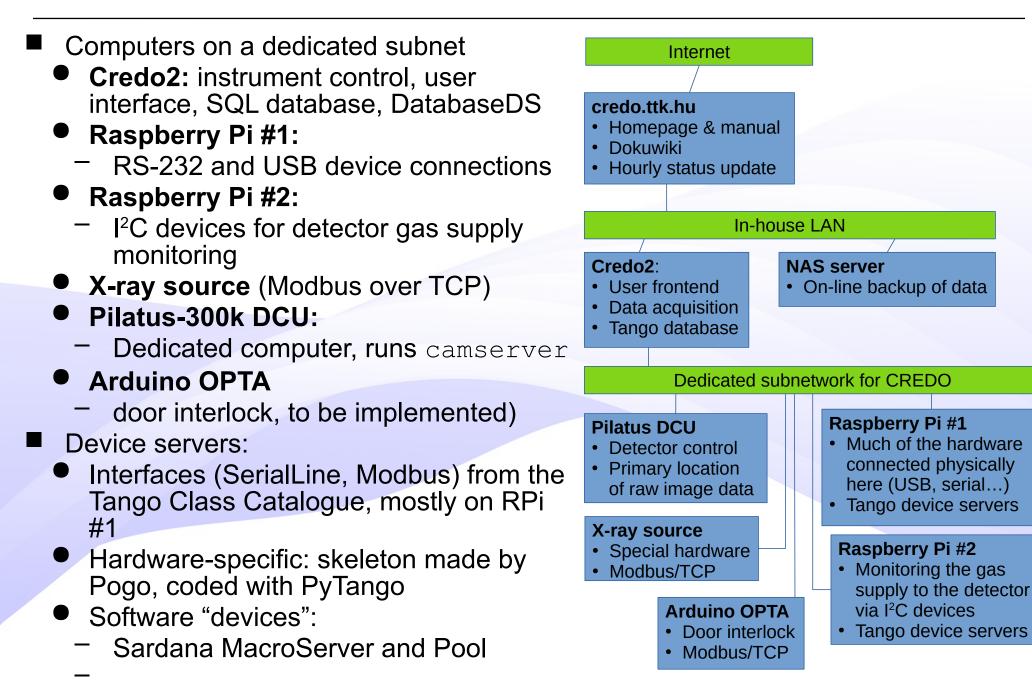
- Two main device servers, each running several device classes
 - **Pool:** list of physical and virtual devices known to Sardana
 - Elements: controllers and their controlled devices
 - MacroServer: list of macros (procedures) that can be used
 - Door: a macro running context.
 Sardana clients (see next slide) connect to these. Each door can run one macro at a time.
- Communication between pool and macroserver objects, as well as clients: over Tango

Spock: the Primary Interface to Sardana

- (Not just) a clone of SPEC
- An extension of IPython
- Macros:
 - IPython "magic commands"
 - Some are familiar from SPEC:
 - mv, umv, mvr, umvr: move motors
 - ascan, dscan: scans (step-wise or continuous, multidimensional also)
 - ct: count for a given time
 - wa, wm, …: query motor positions
- Extensible in Python:
 - Macros (relatively easy to develop them)
 - Controllers (timers&gates, 0-1-2D counters, multi-axis motor controllers, I/O registers, pseudo counters, pseudo motors)
 - Recorders (usually the out-of-the-box ones are fine: .spec, .hdf5, .nxs)
- Not the only viable method: MacroExecutor GUI (or build your own)

٩	IPython: home/labuser	D2 - 3	■ ~	
MainThr Spock 3	ead INFO 2024-09-23 16:01:23,829 TaurusRootLogger: Using PyQt5 (v5.15.9 with Qt 5. .5.0 An interactive laboratory application.	15.8 and	l Python	3.10
help object?	-> Spock's help system. -> Details about 'object'. ?object also works, ?? prints more.			
IPython	profile: spockdoor			
Connect	ed to CREDO			
CREDO [Current	1]: wa positions (user) on 2024-09-23 16:01:29.889234			
User	bsx bsy caprot phlx phly ph2x ph2y 3.4587 1.3000 0.0000 -1.3164 5.7350 -0.0915 15.2967			
User	ph3x ph3y sx sy –0.5599 10.8371 –7.7387 20.2472			
CREDO [Docstri	2]: ?umv			
Syntax:				
Move mo	tor(s) to the specified position(s) and update			
Paramet				
Allows				
	pre-move post-move			
WARNING File:	: do not rely on the file path below /opt/mambaforge/envs/cct/lib/python3.10/site-packages/sardana/spock/spockms.py			
	3]:			

Taurus: graphical user interface

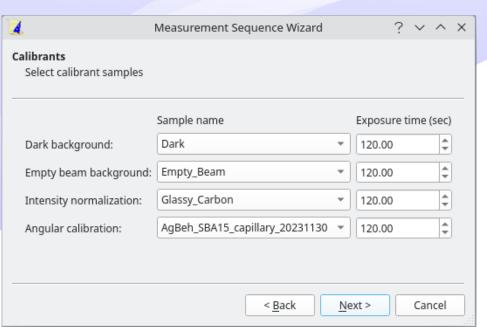

- Based on Qt v5
- Widgets associated to Tango device attributes
 - Automatic polling for changes
 - Instantaneous visualization of device state
 - Control of devices
- Taurus Designer: Qt Designer extended with Taurus widgets
- Might be applicable to others systems beside Tango (e.g., EPICS)

	Ξ	Ge	niX X-ray source co	ntrol	м в х
	Status:	Standby mode	Remote control	X-rays on	C Reset faults
-	Voltage (kV):	30.0	Shutter open Overridden	Warm-up needed	<u>A</u> X-rays
е	Current (mA):	0.30	Faults Shutter lights	X-ray lights Optics vacuum	Warm up
	Power (W):	9.00	Water cooling Shutter mechanism	Tube position	Shutter Power off
	Tube uptime (h):	18459.250	Interlock relay	Door sensor	🕁 Stand by
	Tube temperature (°C):	0.00	Filament Shutter sensor #1	Can ramp-up Shutter sensor #2	Full Power

	🔻 🌉 III 🚍 🖂 :							
Widget Box • ×							Object Ir	spector
Filter		GeniX	X-ray source control -	GenixWindow.u	ui*	~ ×		
Layouts	Status		Remote control	🔵 X-rays on	\odot	Reset faults	Object	
Vertical Layout	Status.		Shutter open	Interlock	0		✓ III Form	
Horizontal Layout	Voltage (kV):		Overridden	Warm-up	needed	X-rays	- Ⅲ taurusFran	ne
Grid Layout			Faults	X-ray light		Warm up	Drepart	. Editor
Form Layout	Current (mA):					wann up	Propert	y Editor
 Spacers 			Shutter lights	Optics va		Shutter		+
/// Horizontal Spacer	Power (W):		Water cooling	Tube posit	ion 🔵		Form : TaurusWidget	
S Vertical Spacer			Shutter mechanism	n 🕥 Tube temp	oerature	Power off	Property	Value
Buttons Button Push Button	Tube uptime (h):		Interlock relay	Door sens	or 🦱	Stand by	▼ QObject	value
Tool Button			Filament	Can ramp		ocarra by	objectName	Form
Radio Button	Tube temperature (°C):					Full Power	+ QWidget	
Check Box			Shutter sensor #1	Shutter se	ensor #2		Resource	Browser
Command Link Button								Filter
🖌 Dialog Button Box								
 Item Views (Model-Based) 							- <resource root=""></resource>	
List View							↓ –icons	
Tree View							deviceima.	

How it is done in reality our lab?

Tango and Sardana in CREDO


Data Acquisition Routine in CREDO using Tango and Sardana

- Geometry set-up: Aperture alignment using scans: maximizing beam intensity, minimizing "parasitic scattering"
 - Virtual counters: full detector area sum, ...
- Finding samples: motor positions corresponding to individual samples on the motorized sample stage: scans again
 - Updating the sample database
- Transmission measurement: only once, before data acquisition
- Data acquisition sequence
 - Environment cycle: constant *in situ* parameters
 - Data acquisition loop: recording images
 - First measure correction and calibration images
 - Then the samples sequentially
 - "Rinse, repeat"
 - At every step: Sardana macros

En	ivi	ronment cycle #1
	S	et up
	D	AQ loop
		Backgrounds & references
		Sample #1
		Sample #2
En	ivi	ronment cycle #2
	S	et up
	D	AQ loop

DAQ Sequence in TOML files

- TOML: Tom's Obvious Minimal Language (https://toml.io)
- Human-readable (and editable) syntax
- Less syntactic cruft than JSON
- Can be validated against a schema (semantic check)
 - Required fields
 - Sanity of values (type, range)
- Can be created by a step-by-step GUI wizard or edited by hand

CREDO experiment sequence generated on 2024-07-18 14:36:58.354822
Run it in Spock with the command
saxsseg <absolute path to script file>

[config]

iterations = 1
... omitted for clarity

[init]

beamstopin = true
xraypower = "full"
closeshutter = true
openshutter = false

[trim]

energy = 4024 # eV gain = "highG"

[finish]

xraypower = "off"

[references]

```
dark.name = "Dark"
dark.time = 120.000 # sec
empty.name = "Empty_Beam"
empty.time = 120.000 # sec
absint.name = "Glassy_Carbon"
# ... omitted for clarity
```

[[sample]]

```
name = "DSPC_chol_PEG_1x"
time = 300.000 #sec
repeats = 6
```

[[sample]]

name = "DSPC_chol_PEG_2x"
time = 300.000 #sec
repeats = 6

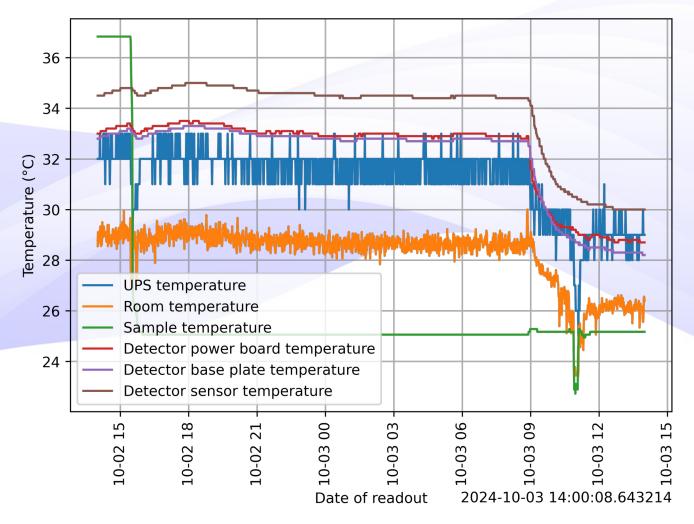
[[cycle]]

iterations = inf
refs = true
samples = true
temperature.set = 25.000
temperature.stabilitycheckradius = 0.100 # °C
temperature.stabilitychecktime = 30.000 # sec

Additional Concepts – "Misusing" Tango

Additional Concepts – or How to "Misuse" Tango and Sardana

Sample database


- SQL table
 - Short, unique title + longer, freeformat description
 - Thickness (for absolute intensity calibration)
 - Transmission (measured separately)
 - X and Y motor positions
- Managed by: SampleStore Tango device
- Editing and viewing through GUI and with custom Spock macros
- NeXus-ready...

	Sample database				\sim \sim
Title AgBeh_LaB6_capillary	Edit the parameters of automatically!	of the sample below	Cł	ha	anges are applied
AgBeh_SBA15_KC_20240628 AgBeh_SBA15_capillary_20231130	Sample name:	REV_0	_		
AgBeh_SBA15_plate_20230524 AgBeh_SBA15_rot_20230524 Dark Empty_Beam Empty_Beam_WAXS Empty_Beam_rot Glassy_Carbon Glassy_Carbon_WAXS Glassy_Carbon_plate Glassy_Carbon_plate Glassy_Carbon_rot	Description:	Red blood cell-ori vesicle (REV) prep Judith Mihály, acc	are ord	ed lir	ted extracellular I from the blood of g to the standard hesis of István Kocsis
PBS REV_0	Category:	Sample_and_can			•
REV_1 REV_10	Situation:	sealed can			•
REV_10_extr	Project:				-
REV_2 REV_5_extr	-				
fibrin_1	Prepared by:	Judith Mihály			
fibrin_2 fibrin_buffer	Date of preparation:	01/10/2024	-		Today
librin_buiter	Distance decrease:	0.0000	\$	±	± 0.0000
	Thickness (cm):	0.1508	*	±	± 0.0009
	X motor position:	5.8926	±	0	0.0058 🗘 🥊
	Y motor position:	28.2032	±		0.0046 🗘 🥊
	Transmission:	0.1712	-	±	± 0.0016
Simple Add Remove [Mask override:				Browse

Additional Concepts – or How to "Misuse" Tango and Sardana

■ State logger: Tango Device

- Periodically saving selected attribute values into a SQL database
- Script: hourly run, draw graphs
- Periodically uploaded to the homepage (https://credo.ttk.hu/status:start)

Additional Concepts – or How to "Misuse" Tango and Sardana

On-line data reduction pipeline

- Required calibrations and corrections to be performed on each detector image as soon as they are ready
- Implemented as a Tango device
- Processing queue
- Images submitted as soon as ready
- Corrected data saved on disk

Flags

- On/off switches
- User interaction into running macros
- E.g., "Break": stop data acquisition after the current image is done

Name of the nev	v flag	+
Advance	Break	SamplesChanged

- Summary:
 - Frameworks developed with large-scale facilities in mind, but can be downscaled to lab-based instruments, too
 - Tango: software bus, distributed object model of real and virtual devices
 - Sardana: macros and procedures (and the needed devices), on Tango grounds
 - Taurus: GUI & abstraction layer (Tango, EPICS, ...)
- Omitted (for now): data storage (See you tomorrow!)
 - How, where, what, why
 - Formats
- Guided tour in the SAXS lab for those interested, after this lecture
- Code available at:
 - https://gitlab.com/bionano/credo

Thank you for your attention!

- Research Group for Biological Nanochemistry, HUN-REN Research Centre for Natural Sciences (https://bionano.ttk.hu/biological-nanochemistry)
- CREDO SAXS laboratory (https://credo.ttk.hu)

