
Research.
Innovation.
Impact.

Adapting Data Acquisition Strategies
from Large-Scale Facilities –
Or How to Dance in the Lab?

András Wacha

Motivation: Why do we need data acquisition strategies?

 Computerized measurements: possibilities and liabilities
● Frequent recording of the measurand
● Automation (sample, geometry or “environment” changes)
● Easier storage, data is ready for reduction, interpretation…

 The requirement for reproducibility and correctness
● Recording as many aspects of the experiment as possible (or necessary)
● Eliminating uncontrolled parameters
● Repeating experiments under the same conditions

 Data storage considerations
● Safe (against data loss or corruption)
● Secure (access control, privacy)
● Short term / long term
● Raw or processed data
● Open data, FAIR principles

 “Do not reinvent the wheel!”
● Build on already developed and proven utilities and techniques
● Each experimental field has its own “best practices” and “publication

guidelines”

Case study: small-angle X-ray scattering

Small-angle X-ray scattering – from the experimentalist’s point of view

 |k0|=2π/λ

 |k2
θ|=2π/λ

|q|=4π sinθ / λ |k0|=2π/λ 2θ

SampleIncident beam Forward scattering

Radiation scattered

under 2θ q:=k2θ-k0

 Fixed wavelength, moderate monochromaticity (Δλ/λ < 1%), highly parallel
 Physics: elastic scattering
 Primary data: “count rate” vs. “scattering angle”
 Instrument-independent units

● Differential scattering cross-section (“dσ/dΩ”, cm2/cm3 × sr-1)
● Momentum transfer (“q”, nm-1)

 Typically two-dimensional detector, scattering pattern
 Stationary geometry, data acquisition for several minutes/hours (lab), few

msecs (synchrotron)

The CREDO instrument (https://credo.ttk.hu)

 In-house built laboratory SAXS camera (→ ask me for a tour in the lab)
● Based on synchrotron experience

 Optimized three-pinhole collimation system
 Wide angular range from 0.02 to 30 nm-1 (q=4πsin(θ)/λ)
 Extensively motorized (XY for pin-holes, sample and beam stop)
 Unique in the region

● Only SAXS instrument in Hungary
● Serves all researchers in-house (including other groups)
● Access for guest researchers via a beamtime proposal system
● Planning to join CERIC-ERIC

 X-ray generator
with mulitlayer
optics

Collimation: three pin-hole stages

Sample stage with
detachable vacuum
chamber

Exchangeable flight tube

Beam-stop stage

Two-dimensional
position sensitive
detector

Incident X-rays

Scattered X-rays

https://credo.ttk.hu/

The CREDO hardware

 Core components
● Source: GeniX3D Cu ULD (Xenocs SA, Sassenage, France)
● Detector: Pilatus-300k (Dectris Ltd, Baden, Switzerland) → 0.3 Mpixel
● Stepper motor controllers (Trinamic GmbH, now Analog Devices)
● Vacuum gauge: TPG-201 (Pfeiffer Vacuum)
● Thermometer (SE521)

 In situ measurements
● Thermostating water circulator (Haake Phoenix P25C)
● Peristaltic pump (LeadFluid BT100s)
● Sample illumination (Schott KL2500)
● Magnetic stirrer (IKA RET control-visc)

 Other
● Uninterruptible Power Supply (Tecnoware Evo DSP Plus)
● Detector gas supply sensor (In-house built, Raspberry-Pi-based)
● …

 RS-232, RS-485, Modbus-TCP, USB HID, TMCL, and other domain-specific solutions

Designing a data acquisition system

Requirements towards the control and data acquisition system

 For the developer: easy to extend
● flexible enough to accommodate heterogeneous equipment
● Specification always change
● Modular: devices can be inserted and removed
● Developing drivers for new devices should be easy
● Build on already available solutions
● Free software vs. paid solutions?

 For the casual user / guest researcher: reliable, correct
● Control in situ parameters (temperature, shear,

illumination, flow rate…)
● In-process visualization and assessment of the quality of

the results
● User-friendly
● Standards-compatible data storage
● High throughput

 For the operator / beamline scientist: highly automated, ease of use
● Perform required background and calibrant measurements
● Measure multiple samples in a sequence
● Standardized procedures (data acquisition, reduction)

The TANGO Control System (https://www.tango-controls.org)

 Developed initially at ESRF (Grenoble), then by the Tango Controls
Consortium: ESRF, DESY, ALBA, SOLEIL, ELETTRA, SOLARIS, ELI
BEAMS, MAX-IV, FRM-II, ...

 A “software bus”: a standardized way of communication between various
parts of the instrument

 Unified interface: hiding how the equipments are connected (USB, TCP/IP,
RS-232…) and where (individual computers on the network)

 Distributed: devices can be attached anywhere, even relocated
 Object-oriented approach (CORBA: Common Object Request Broker

Architecture™)

https://www.tango-controls.org/

The Tango Architecture

 Basic unit: device
● Device server: a program managing

various devices of the same type
(“device class”)

● Not just hardware devices:
– Algorithms (data reduction, file

writer, loggers, software
subsystems)

– Meta-devices (e.g. stepper motors
belonging to the same controller)

– Interfaces (RS232, Modbus, TCP
socket…): other device servers
may rely on these

 Server code: C++, Java, Python
 Client code: C++, Java, Python,

Matlab, Igor Pro, Labview…

MySQL/
MariaDB

DatabaseDS

Device server

Device

Attributes

Commands

Device

Attributes

Commands

Device

Attributes

Commands

Device

Attributes

Commands
Client
(Java,
C++,

Python,
...)

The TANGO device: living inside the device server

 Name: <domain>/<family>/<member>
● e.g., <beamline>/<equipment type>/<equipment name>

– credo/detector/pilatus300k

● e.g., <interface type>/<computer>/<equipment name>
– serial/credo-pi/thermostat, motor/beamstopcontroller/bsx

 Object-oriented approach
● Class: the type of equipment it controls (e.g. a Haake Phoenix P25C

thermostat via RS-232)
● Attributes: state variables

– Read-only (current temperature, current motor speed)
– Read/write (temperature set point, target motor position)
– 0-1-2 dimensional

● Commands (“methods” in the C++ terminology): operations that can be
performed

– e.g. open the beam shutter, start water circulation…
● Properties: parameters and settings not expected to change

– Hardware address of the device
● Pipes: transferring a large amount of data

Anatomy of a TANGO device: the X-ray source of CREDO

 credo/source/genix (the X-ray source)
● Properties:

– modbus: modbus/credo2/genix (another TANGO device!)
● Attributes:

– State (common to all TANGO devices: one of ON, OFF, CLOSE, OPEN,
INSERT, EXTRACT, MOVING, STANDBY, FAULT, INIT, RUNNING
ALARM, DISABLE or UNKNOWN)

– Status (common to all TANGO devices: a textual representation of the
current state)

– current: the actual current in the X-ray tube (mA)
– ht: high tension of the X-ray tube (kV)
– vacuum_fault…
– …

● Commands:
– StartWarmUp, StopWarmUp, FullPower, GoStandby, PowerOff,

ResetFaults, …

Special devices: DatabaseDS and Starter

 DatabaseDS
● One is required for each Tango

system (on a dedicated server host)
● Interface to the SQL database
● Provides name resolution: where

can the device x/y/z be found?
● Storing information about devices:

classes, on which computer they are
running, which instances, which
device servers, name aliases…

● GUI: Jive

 Starter: orchestration
● Not required but very helpful
● Typically on each computer in the

Tango system where device
servers are running

● Started by the OS
● Responsible for starting,

stopping, restarting device
servers on this computer (as
defined in the database)

● GUI: Astor (cf ~ Piazzola)

Developing Device Servers – Pogo

 Program Obviously used to Generate
Objects

 Graphical user interface to define the
devices

 Store the data in an XML file
 Writes skeleton code (C++, Java, Python),

which can be fleshed out
 Auto-generation of documentation
 XML file can be uploaded to the Tango

Classes Catalogue (https://www.tango-cont
rols.org/developers/dsc/)

def read_shutter(self):
 # PROTECTED REGION ID(Genix.shutter_read) ENABLED START #
 """Return the shutter attribute."""
 # ...
 # Actual code to read the variable comes here
 # ...
 return self._shutter
 # PROTECTED REGION END # // Genix.shutter_read

def write_shutter(self, value):
 # PROTECTED REGION ID(Genix.shutter_write) ENABLED START #
 """Set the shutter attribute."""
 # ...
 # Actual code to write the variable comes here
 # ...
 # PROTECTED REGION END # // Genix.shutter_write

https://www.tango-controls.org/developers/dsc/
https://www.tango-controls.org/developers/dsc/

Python Language Bindings

 PyTango (https://pytango.readthedocs.io/en/latest/)
 Object-oriented approach

● Tango attributes → data members
● Tango commands → member functions

 Both for servers and clients
 Introspection

● get_attribute_list()
● get_command_list()

 Interaction with the Tango
database

 ITango: improved, Tango-
aware variant of Ipython

In [1]: from tango import DeviceProxy

In [2]: vac = DeviceProxy('credo/vacuum/tpg201')

In [3]: vac.get_attribute_list()
Out[3]: ['pressure', 'version', 'units', 'State', 'Status']

In [4]: vac.pressure
Out[4]: 0.034

In [5]: vac.Status()
Out[5]: '0.034 mbar'

In [6]: genix = DeviceProxy('credo/source/genix')

In [7]: genix.shutter
Out[7]: False

In [8]: genix.shutter = True

In [9]: genix.get_command_list()
Out[9]: ['FullPower', 'GoStandby', 'Init', 'PowerOff', 'Readout',
'ResetFaults', 'StartWarmUp', 'State', 'Status', 'StopWarmUp']

In [10]: genix.PowerOff()

https://pytango.readthedocs.io/en/latest/

Other Uses and Features of TANGO

 Logging facility: messages from the device servers (errors, warnings…)
● Java GUI: LogViewer

 Polling:
● automatic, periodic query of attributes (state variables)
● … or execution of commands

 Event system
● Client programs can subscribe to event notifications by the device servers
● React to changes instantaneously
● Warning and alarm events

– Lower and upper thresholds for attribute values
 Archival of attribute values

● either periodically,
● … or upon a large enough change

 Automatic generation of (very basic) overview GUIs for devices (ATK,
Synoptic views with JDraw)

 Access control: restrict user access on devices

The Sardana Framework (https://www.sardana-controls.org)

 Developed principally at ALBA (Barcelona, Spain)
 Aims of the project

● A further abstraction layer on Tango: controllers and devices
● Highly flexible and powerful framework for scan measurements
● Macro server
● Interactive command line
● Data recorders: HDF5, SPEC, NeXus

 Sister project: Taurus (https://taurus-scada.org)
● Creation of full-featured GUIs (forms, plots, controls etc) for data

acquisition
● “Configure instead of coding”

https://www.sardana-controls.org/
https://taurus-scada.org/

The Sardana Architecture

 Two main device servers, each
running several device classes

● Pool: list of physical and virtual
devices known to Sardana

– Elements: controllers and their
controlled devices

● MacroServer: list of macros
(procedures) that can be used

– Door: a macro running context.
Sardana clients (see next slide)
connect to these. Each door
can run one macro at a time.

 Communication between pool and
macroserver objects, as well as
clients: over Tango

Spock: the Primary Interface to Sardana

 (Not just) a clone of SPEC
 An extension of IPython
 Macros:

● IPython “magic commands”
● Some are familiar from SPEC:

– mv, umv, mvr, umvr: move motors
– ascan, dscan: scans (step-wise or

continuous, multidimensional also)
– ct: count for a given time
– wa, wm, …: query motor positions

 Extensible in Python:
● Macros (relatively easy to develop them)
● Controllers (timers&gates, 0-1-2D counters,

multi-axis motor controllers, I/O registers,
pseudo counters, pseudo motors)

● Recorders (usually the out-of-the-box ones
 are fine: .spec, .hdf5, .nxs)

 Not the only viable method: MacroExecutor GUI
(or build your own)

Taurus: graphical user interface

 Based on Qt v5
 Widgets associated to Tango device

attributes
● Automatic polling for changes
● Instantaneous visualization of device

state
● Control of devices

 Taurus Designer: Qt Designer
extended with Taurus widgets

 Might be applicable to others systems
beside Tango (e.g., EPICS)

How it is done in reality our lab?

Tango and Sardana in CREDO

 Computers on a dedicated subnet
● Credo2: instrument control, user

interface, SQL database, DatabaseDS
● Raspberry Pi #1:

– RS-232 and USB device connections
● Raspberry Pi #2:

– I2C devices for detector gas supply
monitoring

● X-ray source (Modbus over TCP)
● Pilatus-300k DCU:

– Dedicated computer, runs camserver
● Arduino OPTA

– door interlock, to be implemented)
 Device servers:

● Interfaces (SerialLine, Modbus) from the
Tango Class Catalogue, mostly on RPi
#1

● Hardware-specific: skeleton made by
Pogo, coded with PyTango

● Software “devices”:
– Sardana MacroServer and Pool
– …

Dedicated subnetwork for CREDO

In-house LAN

Credo2:
User frontend
Data acquisition
Tango database

NAS server
On-line backup of data

Pilatus DCU
Detector control
Primary location
of raw image data

Raspberry Pi #1
Much of the hardware
connected physically
here (USB, serial…)
Tango device servers

Raspberry Pi #2
Monitoring the gas
supply to the detector
via I2C devices
Tango device servers

X-ray source
Special hardware
Modbus/TCP

credo.ttk.hu
Homepage & manual
Dokuwiki
Hourly status update

Internet

Arduino OPTA
Door interlock
Modbus/TCP

Data Acquisition Routine in CREDO using Tango and Sardana

 Geometry set-up: Aperture alignment using scans:
maximizing beam intensity, minimizing “parasitic
scattering”

● Virtual counters: full detector area sum, …
 Finding samples: motor positions corresponding to

individual samples on the motorized sample stage:
scans again

● Updating the sample database
 Transmission measurement: only once, before data

acquisition
 Data acquisition sequence

● Environment cycle: constant in situ parameters
● Data acquisition loop: recording images

– First measure correction and calibration images
– Then the samples sequentially
– “Rinse, repeat”

 At every step: Sardana macros

Environment cycle #1

DAQ loop

Set up

Backgrounds &
references

Sample #1

Sample #2

…

Environment cycle #2

DAQ loop
...

Set up

DAQ Sequence in TOML files

 TOML: Tom’s Obvious Minimal
Language (https://toml.io)

 Human-readable (and editable)
syntax

 Less syntactic cruft than JSON
 Can be validated against a

schema (semantic check)
● Required fields
● Sanity of values (type, range)

 Can be created by a step-by-step
GUI wizard or edited by hand

CREDO experiment sequence generated on 2024-07-18 14:36:58.354822
Run it in Spock with the command
saxsseq <absolute path to script file>

[config]
iterations = 1
… omitted for clarity

[init]
beamstopin = true
xraypower = "full"
closeshutter = true
openshutter = false

[trim]
energy = 4024 # eV
gain = "highG"

[finish]
xraypower = "off"

[references]
dark.name = "Dark"
dark.time = 120.000 # sec
empty.name = "Empty_Beam"
empty.time = 120.000 # sec
absint.name = "Glassy_Carbon"
… omitted for clarity

[[sample]]
name = "DSPC_chol_PEG_1x"
time = 300.000 #sec
repeats = 6

[[sample]]
name = "DSPC_chol_PEG_2x"
time = 300.000 #sec
repeats = 6

[[cycle]]
iterations = inf
refs = true
samples = true
temperature.set = 25.000
temperature.stabilitycheckradius = 0.100 # °C
temperature.stabilitychecktime = 30.000 # sec

https://toml.io/

Additional Concepts – “Misusing” Tango

Additional Concepts – or How to “Misuse” Tango and Sardana

 Sample database
● SQL table

– Short, unique title + longer, free-
format description

– Thickness (for absolute intensity
calibration)

– Transmission (measured
separately)

– X and Y motor positions
– …

● Managed by: SampleStore Tango
device

● Editing and viewing through GUI
and with custom Spock macros

● NeXus-ready…

Additional Concepts – or How to “Misuse” Tango and Sardana

 State logger: Tango Device
● Periodically saving selected attribute values into a SQL database
● Script: hourly run, draw graphs
● Periodically uploaded to the homepage (https://credo.ttk.hu/status:start)

https://credo.ttk.hu/status:start

Additional Concepts – or How to “Misuse” Tango and Sardana

 On-line data reduction pipeline
● Required calibrations and corrections to be performed on each detector

image as soon as they are ready
● Implemented as a Tango device
● Processing queue
● Images submitted as soon as ready
● Corrected data saved on disk

 Flags
● On/off switches
● User interaction into running macros
● E.g., “Break”: stop data acquisition after the current image is done

What’s past and what’s next?

 Summary:
● Frameworks developed with large-scale facilities in mind, but can be

downscaled to lab-based instruments, too
● Tango: software bus, distributed object model of real and virtual devices
● Sardana: macros and procedures (and the needed devices), on Tango

grounds
● Taurus: GUI & abstraction layer (Tango, EPICS, …)

 Omitted (for now): data storage (See you tomorrow!)
● How, where, what, why
● Formats

 Guided tour in the SAXS lab for those interested, after this lecture
 Code available at:

● https://gitlab.com/bionano/credo

https://gitlab.com/bionano/credo

Thank you for your attention!

 Research Group for Biological Nanochemistry, HUN-REN Research Centre for Natural Sciences
(https://bionano.ttk.hu/biological-nanochemistry)

 CREDO SAXS laboratory (https://credo.ttk.hu)

https://bionano.ttk.hu/biological-nanochemistry
https://credo.ttk.hu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

