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Motivation: Why do we need data acquisition strategies?

 Computerized measurements: possibilities and liabilities
● Frequent recording of the measurand
● Automation (sample, geometry or “environment” changes)
● Easier storage, data is ready for reduction, interpretation…

 The requirement for reproducibility and correctness
● Recording as many aspects of the experiment as possible (or necessary)
● Eliminating uncontrolled parameters
● Repeating experiments under the same conditions

 Data storage considerations
● Safe (against data loss or corruption)
● Secure (access control, privacy)
● Short term / long term
● Raw or processed data
● Open data, FAIR principles

 “Do not reinvent the wheel!”
● Build on already developed and proven utilities and techniques
● Each experimental field has its own “best practices” and “publication 

guidelines”



  

Case study: small-angle X-ray scattering



  

Small-angle X-ray scattering – from the experimentalist’s point of view

 |k0|=2π/λ

 |k2
θ|=2π/λ

|q|=4π sinθ / λ |k0|=2π/λ 2θ

SampleIncident beam Forward scattering

Radiation scattered

under 2θ q:=k2θ-k0

 Fixed wavelength, moderate monochromaticity (Δλ/λ < 1%), highly parallel
 Physics: elastic scattering
 Primary data: “count rate” vs. “scattering angle”
 Instrument-independent units

● Differential scattering cross-section (“dσ/dΩ”, cm2/cm3 × sr-1)
● Momentum transfer (“q”, nm-1)

 Typically two-dimensional detector, scattering pattern
 Stationary geometry, data acquisition for several minutes/hours (lab), few 

msecs (synchrotron)



  

The CREDO instrument (https://credo.ttk.hu)

 In-house built laboratory SAXS camera (→ ask me for a tour in the lab)
● Based on synchrotron experience

 Optimized three-pinhole collimation system
 Wide angular range from 0.02 to 30 nm-1 (q=4πsin(θ)/λ)
 Extensively motorized (XY for pin-holes, sample and beam stop)
 Unique in the region

● Only SAXS instrument in Hungary
● Serves all researchers in-house (including other groups)
● Access for guest researchers via a beamtime proposal system
● Planning to join CERIC-ERIC

  X-ray generator
with mulitlayer
optics

Collimation: three pin-hole stages

Sample stage with 
detachable vacuum
chamber

Exchangeable flight tube

Beam-stop stage

Two-dimensional 
position sensitive 
detector

Incident X-rays

Scattered X-rays

https://credo.ttk.hu/


  

The CREDO hardware

 Core components
● Source: GeniX3D Cu ULD (Xenocs SA, Sassenage, France)
● Detector: Pilatus-300k (Dectris Ltd, Baden, Switzerland) → 0.3 Mpixel
● Stepper motor controllers (Trinamic GmbH, now Analog Devices) 
● Vacuum gauge: TPG-201 (Pfeiffer Vacuum)
● Thermometer (SE521)

 In situ measurements
● Thermostating water circulator (Haake Phoenix P25C)
● Peristaltic pump (LeadFluid BT100s)
● Sample illumination (Schott KL2500)
● Magnetic stirrer (IKA RET control-visc)

 Other
● Uninterruptible Power Supply (Tecnoware Evo DSP Plus)
● Detector gas supply sensor (In-house built, Raspberry-Pi-based)
● …

 RS-232, RS-485, Modbus-TCP, USB HID, TMCL, and other domain-specific solutions



  

Designing a data acquisition system



  

Requirements towards the control and data acquisition system

 For the developer: easy to extend
● flexible enough to accommodate heterogeneous equipment
● Specification always change
● Modular: devices can be inserted and removed
● Developing drivers for new devices should be easy
● Build on already available solutions
● Free software vs. paid solutions?

 For the casual user / guest researcher: reliable, correct
● Control in situ parameters (temperature, shear, 

illumination, flow rate…)
● In-process visualization and assessment of the quality of 

the results
● User-friendly
● Standards-compatible data storage
● High throughput

 For the operator / beamline scientist: highly automated, ease of use
● Perform required background and calibrant measurements
● Measure multiple samples in a sequence
● Standardized procedures (data acquisition, reduction)



  

The TANGO Control System (https://www.tango-controls.org)

 Developed initially at ESRF (Grenoble), then by the Tango Controls 
Consortium: ESRF, DESY, ALBA, SOLEIL, ELETTRA, SOLARIS, ELI 
BEAMS, MAX-IV, FRM-II, ...

 A “software bus”: a standardized way of communication between various 
parts of the instrument

 Unified interface: hiding how the equipments are connected (USB, TCP/IP, 
RS-232…) and where (individual computers on the network)

 Distributed: devices can be attached anywhere, even relocated
 Object-oriented approach (CORBA: Common Object Request Broker 

Architecture™)

https://www.tango-controls.org/


  

The Tango Architecture

 Basic unit: device 
● Device server: a program managing 

various devices of the same type 
(“device class”)

● Not just hardware devices:
– Algorithms (data reduction, file 

writer, loggers, software 
subsystems)

– Meta-devices (e.g. stepper motors 
belonging to the same controller)

– Interfaces (RS232, Modbus, TCP 
socket…): other device servers 
may rely on these

 Server code: C++, Java, Python
 Client code: C++, Java, Python, 

Matlab, Igor Pro, Labview…

MySQL/
MariaDB

DatabaseDS

Device server

Device

Attributes

Commands

Device

Attributes

Commands

Device

Attributes

Commands

Device

Attributes

Commands
Client 
(Java, 
C++, 

Python, 
...)



  

The TANGO device: living inside the device server

 Name: <domain>/<family>/<member>
● e.g., <beamline>/<equipment type>/<equipment name>

– credo/detector/pilatus300k

● e.g., <interface type>/<computer>/<equipment name>
– serial/credo-pi/thermostat, motor/beamstopcontroller/bsx

 Object-oriented approach
● Class: the type of equipment it controls (e.g. a Haake Phoenix P25C 

thermostat via RS-232)
● Attributes: state variables

– Read-only (current temperature, current motor speed)
– Read/write (temperature set point, target motor position)
– 0-1-2 dimensional

● Commands (“methods” in the C++ terminology): operations that can be 
performed

– e.g. open the beam shutter, start water circulation…
● Properties: parameters and settings not expected to change

– Hardware address of the device
● Pipes: transferring a large amount of data



  

Anatomy of a TANGO device: the X-ray source of CREDO

 credo/source/genix (the X-ray source)
● Properties:

– modbus: modbus/credo2/genix (another TANGO device!)
● Attributes:

– State (common to all TANGO devices: one of ON, OFF, CLOSE, OPEN, 
INSERT, EXTRACT, MOVING, STANDBY, FAULT, INIT, RUNNING 
ALARM, DISABLE or UNKNOWN)

– Status (common to all TANGO devices: a textual representation of the 
current state)

– current: the actual current in the X-ray tube (mA)
– ht: high tension of the X-ray tube (kV)
– vacuum_fault…
– …

● Commands:
– StartWarmUp, StopWarmUp, FullPower, GoStandby, PowerOff, 

ResetFaults, …



  

Special devices: DatabaseDS and Starter

 DatabaseDS
● One is required for each Tango 

system (on a dedicated server host)
● Interface to the SQL database
● Provides name resolution: where 

can the device x/y/z be found?
● Storing information about devices: 

classes, on which computer they are 
running, which instances, which 
device servers, name aliases…

● GUI: Jive 

 Starter: orchestration
● Not required but very helpful
● Typically on each computer in the 

Tango system where device 
servers are running

● Started by the OS
● Responsible for starting, 

stopping, restarting device 
servers on this computer (as 
defined in the database)

● GUI: Astor (cf ~ Piazzola)



  

Developing Device Servers – Pogo

 Program Obviously used to Generate 
Objects

 Graphical user interface to define the 
devices

 Store the data in an XML file
 Writes skeleton code (C++, Java, Python), 

which can be fleshed out
 Auto-generation of documentation
 XML file can be uploaded to the Tango 

Classes Catalogue (https://www.tango-cont
rols.org/developers/dsc/)

def read_shutter(self):
    # PROTECTED REGION ID(Genix.shutter_read) ENABLED START #
    """Return the shutter attribute."""
    # ...
    # Actual code to read the variable comes here
    # ...
    return self._shutter 
    # PROTECTED REGION END # // Genix.shutter_read

def write_shutter(self, value):
    # PROTECTED REGION ID(Genix.shutter_write) ENABLED START #
    """Set the shutter attribute."""
    # ...
    # Actual code to write the variable comes here
    # ...
    # PROTECTED REGION END #    //  Genix.shutter_write

https://www.tango-controls.org/developers/dsc/
https://www.tango-controls.org/developers/dsc/


  

Python Language Bindings

 PyTango (https://pytango.readthedocs.io/en/latest/)
 Object-oriented approach

● Tango attributes → data members
● Tango commands → member functions

 Both for servers and clients
 Introspection

● get_attribute_list()
● get_command_list()

 Interaction with the Tango 
database

 ITango: improved, Tango-
aware variant of Ipython

In [1]: from tango import DeviceProxy

In [2]: vac = DeviceProxy('credo/vacuum/tpg201')

In [3]: vac.get_attribute_list()
Out[3]: ['pressure', 'version', 'units', 'State', 'Status']

In [4]: vac.pressure
Out[4]: 0.034

In [5]: vac.Status()
Out[5]: '0.034 mbar'

In [6]: genix = DeviceProxy('credo/source/genix')

In [7]: genix.shutter
Out[7]: False

In [8]: genix.shutter = True

In [9]: genix.get_command_list()
Out[9]: ['FullPower', 'GoStandby', 'Init', 'PowerOff', 'Readout', 
'ResetFaults', 'StartWarmUp', 'State', 'Status', 'StopWarmUp']

In [10]: genix.PowerOff()

https://pytango.readthedocs.io/en/latest/


  

Other Uses and Features of TANGO

 Logging facility: messages from the device servers (errors, warnings…)
● Java GUI: LogViewer

 Polling:
● automatic, periodic query of attributes (state variables)
● … or execution of commands

 Event system
● Client programs can subscribe to event notifications by the device servers
● React to changes instantaneously
● Warning and alarm events

– Lower and upper thresholds for attribute values
 Archival of attribute values

● either periodically,
● … or upon a large enough change

 Automatic generation of (very basic) overview GUIs for devices (ATK, 
Synoptic views with JDraw)

 Access control: restrict user access on devices



  

The Sardana Framework (https://www.sardana-controls.org)

 Developed principally at ALBA (Barcelona, Spain)
 Aims of the project

● A further abstraction layer on Tango: controllers and devices
● Highly flexible and powerful framework for scan measurements
● Macro server
● Interactive command line
● Data recorders: HDF5, SPEC, NeXus

 Sister project: Taurus (https://taurus-scada.org)
● Creation of full-featured GUIs (forms, plots, controls etc) for data 

acquisition
● “Configure instead of coding”

https://www.sardana-controls.org/
https://taurus-scada.org/


  

The Sardana Architecture

 Two main device servers, each 
running several device classes

● Pool: list of physical and virtual 
devices known to Sardana

– Elements: controllers and their 
controlled devices

● MacroServer: list of macros 
(procedures) that can be used

– Door: a macro running context. 
Sardana clients (see next slide) 
connect to these. Each door 
can run one macro at a time.

 Communication between pool and 
macroserver objects, as well as 
clients: over Tango



  

Spock: the Primary Interface to Sardana

 (Not just) a clone of SPEC
 An extension of IPython 
 Macros: 

● IPython “magic commands”
● Some are familiar from SPEC:

– mv, umv, mvr, umvr: move motors
– ascan, dscan: scans (step-wise or 

continuous, multidimensional also)
– ct: count for a given time
– wa, wm, …: query motor positions

 Extensible in Python: 
● Macros (relatively easy to develop them)
● Controllers (timers&gates, 0-1-2D counters, 

multi-axis motor controllers, I/O registers, 
pseudo counters, pseudo motors)

● Recorders (usually the out-of-the-box ones
 are fine: .spec, .hdf5, .nxs)

 Not the only viable method: MacroExecutor GUI
(or build your own)



  

Taurus: graphical user interface

 Based on Qt v5
 Widgets associated to Tango device 

attributes
● Automatic polling for changes
● Instantaneous visualization of device 

state
● Control of devices

 Taurus Designer: Qt Designer 
extended with Taurus widgets

 Might be applicable to others systems 
beside Tango (e.g., EPICS)



  

How it is done in reality our lab?



  

Tango and Sardana in CREDO

 Computers on a dedicated subnet
● Credo2: instrument control, user 

interface, SQL database, DatabaseDS
● Raspberry Pi #1: 

– RS-232 and USB device connections
● Raspberry Pi #2:

– I2C devices for detector gas supply 
monitoring

● X-ray source (Modbus over TCP)
● Pilatus-300k DCU: 

– Dedicated computer, runs camserver
● Arduino OPTA

– door interlock, to be implemented)
 Device servers:

● Interfaces (SerialLine, Modbus) from the 
Tango Class Catalogue, mostly on RPi 
#1

● Hardware-specific: skeleton made by 
Pogo, coded with PyTango

● Software “devices”:
– Sardana MacroServer and Pool
– …

Dedicated subnetwork for CREDO

In-house LAN

Credo2:
User frontend
Data acquisition
Tango database

NAS server
On-line backup of data

Pilatus DCU
Detector control
Primary location 
of raw image data

Raspberry Pi #1
Much of the hardware 
connected physically 
here (USB, serial…)
Tango device servers

Raspberry Pi #2
Monitoring the gas 
supply to the detector 
via I2C devices
Tango device servers

X-ray source
Special hardware
Modbus/TCP

credo.ttk.hu
Homepage & manual
Dokuwiki
Hourly status update

Internet

Arduino OPTA
Door interlock
Modbus/TCP



  

Data Acquisition Routine in CREDO using Tango and Sardana

 Geometry set-up: Aperture alignment using scans: 
maximizing beam intensity, minimizing “parasitic 
scattering”

● Virtual counters: full detector area sum, …
 Finding samples: motor positions corresponding to 

individual samples on the motorized sample stage: 
scans again

● Updating the sample database
 Transmission measurement: only once, before data 

acquisition
 Data acquisition sequence

● Environment cycle: constant in situ parameters
● Data acquisition loop: recording images

– First measure correction and calibration images
– Then the samples sequentially
– “Rinse, repeat”

 At every step: Sardana macros

Environment cycle #1

DAQ loop

Set up

Backgrounds & 
references

Sample #1

Sample #2

…

Environment cycle #2

DAQ loop
...

Set up



  

DAQ Sequence in TOML files

 TOML: Tom’s Obvious Minimal 
Language (https://toml.io)

 Human-readable (and editable) 
syntax

 Less syntactic cruft than JSON
 Can be validated against a 

schema (semantic check)
● Required fields
● Sanity of values (type, range)

 Can be created by a step-by-step 
GUI wizard or edited by hand

# CREDO experiment sequence generated on 2024-07-18 14:36:58.354822
# Run it in Spock with the command
#    saxsseq <absolute path to script file>

[config]
iterations = 1
# … omitted for clarity

[init]
beamstopin = true
xraypower = "full"
closeshutter = true
openshutter = false

[trim]
energy = 4024  # eV
gain = "highG"

[finish]
xraypower = "off"

[references]
dark.name = "Dark"
dark.time = 120.000  # sec
empty.name = "Empty_Beam"
empty.time = 120.000  # sec
absint.name = "Glassy_Carbon"
# … omitted for clarity

[[sample]]
name = "DSPC_chol_PEG_1x"
time = 300.000  #sec
repeats = 6

[[sample]]
name = "DSPC_chol_PEG_2x"
time = 300.000  #sec
repeats = 6

[[cycle]]
iterations = inf
refs = true
samples = true
temperature.set = 25.000
temperature.stabilitycheckradius = 0.100  # °C
temperature.stabilitychecktime = 30.000  # sec

https://toml.io/


  

Additional Concepts – “Misusing” Tango



  

Additional Concepts – or How to “Misuse” Tango and Sardana

 Sample database
● SQL table

– Short, unique title + longer, free-
format description

– Thickness (for absolute intensity 
calibration)

– Transmission (measured 
separately)

– X and Y motor positions
– …

● Managed by: SampleStore Tango 
device

● Editing and viewing through GUI 
and with custom Spock macros

● NeXus-ready…



  

Additional Concepts – or How to “Misuse” Tango and Sardana

 State logger: Tango Device
● Periodically saving selected attribute values into a SQL database
● Script: hourly run, draw graphs
● Periodically uploaded to the homepage (https://credo.ttk.hu/status:start)

https://credo.ttk.hu/status:start


  

Additional Concepts – or How to “Misuse” Tango and Sardana

 On-line data reduction pipeline
● Required calibrations and corrections to be performed on each detector 

image as soon as they are ready
● Implemented as a Tango device
● Processing queue
● Images submitted as soon as ready
● Corrected data saved on disk

 Flags
● On/off switches
● User interaction into running macros
● E.g., “Break”: stop data acquisition after the current image is done



  

What’s past and what’s next?

 Summary:
● Frameworks developed with large-scale facilities in mind, but can be 

downscaled to lab-based instruments, too
● Tango: software bus, distributed object model of real and virtual devices
● Sardana: macros and procedures (and the needed devices), on Tango 

grounds
● Taurus: GUI & abstraction layer (Tango, EPICS, …)

 Omitted (for now): data storage (See you tomorrow!)
● How, where, what, why
● Formats

 Guided tour in the SAXS lab for those interested, after this lecture
 Code available at:

● https://gitlab.com/bionano/credo

https://gitlab.com/bionano/credo


  

Thank you for your attention!

 Research Group for Biological Nanochemistry, HUN-REN Research Centre for Natural Sciences
(https://bionano.ttk.hu/biological-nanochemistry)

 CREDO SAXS laboratory (https://credo.ttk.hu)

https://bionano.ttk.hu/biological-nanochemistry
https://credo.ttk.hu/
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