

IN-HOUSE X-RAY SPECTROSCOPY AT THE MPI CEC 0 **UPDATE AND APPLICATIONS** 0 0 0 0 0 0 0 0 0 Yves Kayser, Carl Camayang, Christian Feike, Philipp Manthey; Diana Tiburcio, Serena DeBeer Max Planck Insitute for Chemical Energy Conversion yves.kayser@cec.mpg.de

X-RAY ABSORPTION FINE STRUCTURE SPECTROSCOPY

METAL-LIGAND BOND AND PRE-EDGE INTENSITY

	Fe–N ^{Ad} (Å)	Calc. mai pre-edge intensity*
Fe ^{II}	1.659(3)	1.08
Fe ^{III}	1.653(2)	2.64
Fe ^Ⅳ	1.618(2)	4.06

* most intense calculated transition in the pre-edge region

J. Am. Chem. Soc. 145, 2, 873-887 (2023).

XES: SPIN STATE AND COVALENCY

- Kβ_{1,3} and Kβ' move closer together with decreasing spin state (i.e as 3p-3d exchange interaction decreases)
- Kβ lines reflect number of unpaired d electrons
- Require very little time to measure (minute(s) using
 SR) or minutes to hours with a stand-alone source.

Coord. Chem. Rev. 249, 65 (2005).

- Even for a series of high spin ferric compounds, large variations in the Kβ mainlines are observed
- Change in ΔE > of over 4.5 eV
- If nominal spin is known (by other methods) covalency can be extracted.
- Emphasizes importance of combined methods.

J. Am. Chem. Soc. 136, 9453 (2014).

IN-HOUSE X-RAY SPECTROSCOPY FACILITIES AT THE CEC

XES XAS EXAFS

Hard X-ray radiation

EXAFS

Hard X-ray

radiation

XES

Tender to hard X-ray radiation

XAS

Soft X-ray radiation

SCANNING-TYPE SPECTROMETERS

DISPERSIVE-TYPE SPECTROMETER

FULL CYLINDER VON HAMOS X-RAY EMISSION SPECTROMETER

Rev Sci. Instrum. 89, 113111 (2018).

DETECTION SENSITIVITY CONSIDERATIONS

• Photon flux

Exp. determined photon flux for Ga Ka: 6.0(5) × 10^{12} s⁻¹ sr⁻¹ at 200 W for 68% Ga, 22% In and 10% Sn

J. Anal. At. Spectrom. 34, 1497 (2019).

Impact of focusing optics

Modelled transmission and solid angle of acceptance reduce photoon flux by a factor 10⁻³

J. Anal. At. Spectrom., 36, 2519 (2021).

\rightarrow 1 \times $10^{10}~s^{-1}$ Ga K α photons (9.65 keV) at 250 W

• Atomic fundamental parameters: photoionization crosssection, fluorescence yield, trans. prob.

 Detection efficiency: solid angle of diffraction crystal, reflectivity, CCD efficiency

 d_{HAPO}

HIGHLY ANNEALED PYROLITHIC GRAPHITE

- mosaic crystal that has intrinsically a high integral reflectivity due to mosaic focusing \rightarrow 5x times larger than that of pure crystals
- can be applied to optics with a small radius of curvature without lattice distortions
 → increased solid angle of detection can be realized
- \rightarrow spectrometers with an increased detection efficiency can be realized

SINGLE PHOTON IMAGE EVALUATION

1 pixel event

2 pixel event

SINGLE PHOTON IMAGE EVALUATION

4 pixel event

13

FROM IMAGE TO SPECTRUM

Max-Planck-Insitut for Chemical Energy Conversion | Yves Kayser | Laboratory-based high energy resolution X-ray spectroscopy

CALCIUM VALENCE-TO-CORE XES

Calculations with artificial Ca–CI distances help understand structure–spectrum relationships

- Energy depends on the electronegativity / intrinsic ionisation energy of the ligand
- Peak areas increase exponentially as distance becomes shorter

Compound	Coordination	Halogen Pauling Electronegativity	Average Ca–X Distance (Å)
CaF ₂	8 (O _h)	3.98	2.366
CaCl ₂	6 (O _h /D _{4h})	3.16	2.745
CaBr ₂	6 (O _h /D _{4h})	2.96	2.885
CaI ₂	6 (O _h)	2.66	3.117
		II	

Inorg. Chem. 58, 16292 (2019).

ELECTRON-/ENERGY-TRANSFER PHOTOCHEMISTRY

Max-Planck-Insitut for Chemical Energy Conversion | Yves Kayser | Laboratory-based high energy resolution X-ray spectroscopy

07.10.2024

INVESTIGATION OF IRON DIMERS

- Fe centers, supported by substituted cyclopentadiene bridging nitride groups.
- the Fe atoms are coupled with strong antiferromagnetic interactions
 - \rightarrow diamagnetic behavior by the system
- determination of oxidation states by widely employed magnetometric techniques like SQUID is complicated

Courtesy of Vishwashri Srinivasan

DIRECT H₂O₂ SYNTHESIS FROM H₂ AND O₂

- Concentration of H₂O₂ produced limited by concentration of H₂/O₂ in gas mixture (explosive risk)
- Interest in on-site production and consumption
- > 95% selectivity (Au-Pd, Sn-Pd)
 > 99% H₂ utilization (Au-Pd, Sn-Pd)
- H₂O₂ decomposition by catalyst must be minimized
- Productivity and H2O2 degradation rate modified via introduction of secondary metals and support material
- Goal: Understand effects of secondary metals on the electronic structure of Pd and which effects are beneficial towards catalysis.

EASYXES-100 SETUP DEVELOPMENT

Rev. Sci. Instrum. 90, 024106 (2019).

EASYXES-100 SETUP DEVELOPMENT

Automatized overpressure regulation on the He flowbox

Rev. Sci. Instrum. 90, 024106 (2019).

SETUP DEVELOPMENT ON EASYXES-100 INSTRUMENT

regulation

overpressure

regulation

overpressure

with automatized

without automatized

Cu K

Max-Planck-Insitut for Chemical Energy Conversion | Yves Kayser | Laboratory-based high energy resolution X-ray spectroscopy

07.10.2024

Pt L₃

XANES MEASUREMENTS

LABXANES INSTRUMENT

source	optic	characteristics		
Liquid motal iat as a high nower	Cylindrically curved Si or Go	Technique(s)	XANES	
micro-focused X-ray source	Cylindrically curved SI of Ge	Туре	Dispersive	
		Geometry	von Hamos (R = 350 mm)	
	Cuts with forbidden 2 nd	Source	Metal-Jet X-ray tube	
	diffraction order	Dispersive Element	cylidnricaly crved Si or Ge crysta	
		Detector	Eiger	
detector	setup	Energy range	5 keV - >11 keV	
		K edges	$\text{Ti} \rightarrow \text{Zn}$	
Single-photon counting	Slitless geometry	L edges	$Cs \rightarrow Ir$	
EIGER2R hybrid CMOS 2D pixelated detector fast readout & position sensitive detection		Sample Cooling	Yes (Peltier)	
	Peltier element for sample cooling or heating	Options	-	
		Energy window	> 0.2 keV	
		Resolving power E/ΔE	> 4000	
		Measurement time	to be commissioned	

In collaboration with C. Schlesiger and W. Malzer

DESIGN PERFORMANCE

Considerations on crystal selection

- selection of crystal cuts: measurement at high Bragg angle $(n \ ^{hc}/_{E} = 2d \ \sin \theta \rightarrow {}^{\Delta E}/_{E} = \cot \theta \ \Delta \theta)$
- pure Si or Ge crystals: better resolving power, but lower reflectivity compared to synthetic or mosaic diffraction crystals
- radius of curvature *R*: impacts solid angle of det-ection $(\Omega \sim 1/R^2)$ and resolving power $(\Delta E/E \sim 1/R)$
- crystal cuts with forbidden 2nd diffraction order: allows using fast read-out detectors without energy discrimination capabilities

		energy / eV				<u>nv / eV</u>
	Bragg angle	source contr.	crystal contr.	detector contr.	overall ∆ <i>E</i>	energy range
Fe-K (7112 eV) @ Si 531	71.2°	0.13 eV	1.23 eV	0.24 eV	1.26 eV	278 eV
Ni-K (8333 eV) @ Si 533	63.9°	0.21 eV	1.73 eV	0.39 eV	1.79 eV	432 eV
Ni-K (8333 eV) @ Si 711	78.0°	0.10 eV	1.15 eV	0.18 eV	1.17 eV	222 eV
Cu-K (8979 eV) @ Si 711	65.2°	0.22 eV	2.20 eV	0.40 eV	2.26 eV	448 eV
				_		

In collaboration with C. Schlesiger and W. Malzer

DESIGN PERFORMANCE

Estimated resolving power and energy range covered

- source size ($s = 20 \,\mu\text{m}$) of the liquid metal jet: $\Delta E / E = \frac{s \cos \theta}{R}$
- crystal (R = 350 mm, d = 300 µm): stress-strain and penetration depth effects calculated using pyTTE [A.-P. Honkanen and S. Huotari, IUCrJ 8, 102 (2021)]
- detector pixel size ($p = 75 \,\mu\text{m}$) in dispersion direction: $\Delta E / E = \frac{p \cos \theta}{2R}$
- energy range covered defined by crystal and detector dimensions in dispersion direction

energies / eV

	Bragg angle	source contr.	crystal contr.	detector contr.	overall ∆ <i>E</i>	energy range
Fe-K (7112 eV) @ Si 531	71.2°	0.13 eV	1.23 eV	0.24 eV	1.26 eV	278 eV
Ni-K (8333 eV) @ Si 533	63.9°	0.21 eV	1.73 eV	0.39 eV	1.79 eV	432 eV
Ni-K (8333 eV) @ Si 711	78.0°	0.10 eV	1.15 eV	0.18 eV	1.17 eV	222 eV
Cu-K (8979 eV) @ Si 711	65.2°	0.22 eV	2.20 eV	0.40 eV	2.26 eV	448 eV

In collaboration with C. Schlesiger and W. Malzer

LABXANES OPERATION

LABXANES OPERATION

Max-Planck-Insitut for Chemical Energy Conversion | Yves Kayser | Laboratory-based high energy resolution X-ray spectroscopy

07.10.2024

In collaboration with C. Schlesiger and W. Malzer

pixel

per

rate

count

detected

per

rate

count

detected

LPP SOURCE WITH 2 TWIN-ARM RZP SPECTROMETERS

LPP SOURCE WITH 2 TWIN-ARM RZP SPECTROMETERS

Probe laser 190 mJ at 1064 nm pulse energy 100 Hz pulse repetition rate pulse duration of about 3 ns

FLAT JET TO PROBE SAMPLES IN SOLUTION

Leafshaped liquid sheet with thicker rims and diminishing thickness of the median cross section (from top to bottom)

- Sheet thickness: 0,5 μm 3 μm
- Area of minimal curvature: 100 μm x 100 μm² to 500 μm x 500 μm (depending on jet size)
- Thickness stability: <1%
- Spatial stability <1 μm
- Temperature from -20° to +100° C

INVESTIGATION OF LONG-LIVED EXCITED STATES

Electron-Transfer Photochemistry of MC States

J. Am. Chem. Soc., **2000**, 122, 4092. *J. Am. Chem. Soc.*, **2020**, 142, 16229.

- Electron transfer from ⁵MC state (localized in metal center)
- Investigation of transfer mechanism in a photoredox reaction

Courtesy of Issiah B. Lozada

OUTLOOK

- For XES: comparison of data collected across a range of elements between PINK beamline and in-house XES spectrometer
- Development of sample environments to accomodate different needs within the department on Inorganic Spectroscopy at the CEC
- Move towards time-resolved measurements in the soft X-ray energy range
- Commissioning of the new in-house XANES spectrometer with crosscomparison to the exisiting spectrometer

VtC Cr-XES data of spent Li₁₄Cr₂N₈O

Thank you for your attention

Thanks to Serena DeBeer, John Carl Camayang, Christian Feike, Liqun Kang, Issiah Lozada, Philipp Manthey, Anna Scott, Vishwashri Srinivasan, Diana Tiburcio and the department of Inorganic Spectroscopy

Serena DeBeer acknowleges the ERC for funding of the in-house XES spectrometer

Acknowledgments to Birgit Kanngießer, Wolfgang Malzer, Christoper Schlesiger, Richard Gnewkow, and Daniel Grötzsch from the Technical University of Berlin and the Berlin Laboratory for Innovative X-ray spectroscopy

