

LabXAS: a new table-top x-ray spectrometer designed at Politecnico di Milano

3 October 2024 Research Centre for Natural Sciences, Budapest Dr. Roberto Sant Politecnico di Milano

Outline

Introduction

- The PolimiX group
- Motivations and Objectives
- Design criteria and targets

- Overview
- The chamber
- Rowland geometry
- The x-ray source
- The sample
- The crystal analyzer
- The detector
- Motors
- Radioprotection

Current situation

- Applications
- Ongoing works
- Program

Conclusions and Perspectives

The PolimiX Group

Prof. Giacomo Ghiringhelli

Prof. Marco

Dr. Roberto

Sant

Moretti

Expertise in synchrotron x-ray techniques and instrumentation design:

- Resonant Inelastic X-ray Scattering (RIXS)
- X-ray Absorption Spectroscopy (XAS)

ID32 and ID20 RIXS spectrometers and ID32 XMCD station at the ESRF

Dr. Roberto Sant, Politecnico di Milano

Budapest, RCNS, 3 october 2024

The **technological advanments on x-ray sources** has favoured the rise of **compact table-top** *instruments to be hosted* **in standard labs**.

Motivations :

- □ **Minimize** costs, size and complexity
- Provide fast access to XAS measurements for local groups :
- Characterization of freshly synthesized
 new materials
- Sample screening prior to synchrotron measurements

Objectives:

□ Envisaged scientific methods :

 XANES and EXAFS in the energy of 5-15 keV (3d-K, 5d-L edges of TM) **Criterion : "***Minimizing complexity while maximizing the ease of use*" by :

- **D** Pumping air instead of using He
- □ Eliminate part of the optics by working with a **non-collimated (i.e. divergent) beam**
- exploiting multiple reflection orders from a single analyzer to cover the whole desired energy range

Design criteria and targets

Design:

- In transmission
- In vacuum
- μ-focus divergent x-ray source
- Johansson cylindrically bent crystal analyzer (Js-CBCA)
- Large area detector

Targets :

- Energy range: 5-15 keV
- Resolution: < 3 eV</p>
- Counting rate: 10⁵ ph/s
- Scan time (1000 pts, $\Delta E=2 \text{ eV}$):
 - < 2 hours

Outline

Introduction

- The PolimiX group
- Motivations and Objectives
- Design criteria and targets

- Overview
- The chamber
- Rowland geometry
- The x-ray source
- The sample
- The crystal analyzer
- The detector
- Motors
- Radioprotection

Current situation

- Applications
- Ongoing works
- Program

Conclusions and Perspectives

LabXAS is a **table-top** instrument designed and built in collaboration with **Cinel s.r.l**. It consists of a vacuum chamber containing an **x-ray source**, a **crystal analyser** and a **detector** moving on a **Rowland circle**.

LABXAS is a **cylindrical vacuum chamber**. The beam travels in **rough vacuum** for most of its path to minimize air absorption. Only the source and the sample are in air.

Design Specs:

- Stainless steel
- Diameter: 720 mm
- height: 600 mm
- Volume: 240 l
- Weight: 230 kg

Designed to work:

- In transmission
- In rough vacuum: 10⁻² mbar

Rowland geometry

Source (S), crystal analyser (C) and detector (D) stay on a **Rowland circle.** In our setup **S is fixed**.

- Rowland Radius: R=0.25m
- Fixed source (S)
- 5 motors* :
 - Crystal (C): T_x^c , R_z^c
 - Detector (D): T_x^D, T_y^D, R_z^D

(*) and additional manual movements for adjustments

We chose a **micro-focus sealed tube** x-ray source. Working in transmission mode with the sample at a few cm from the source, the **beam does not need to be collimated. The source size is 35** µm in the scattering plan.

- Bremsstrahlung radiation
- Mo anode
- Air-cooled
- μ-focus: 35x300 (HxV) μm²
- Divergent beam: ~9°

0.05

Low power consumption and **high power density** makes the μ -focus source performance comparable to rotating anode. The Intensity **spectrum is flat** in the TM 3d-K / 5d-L edge region.

- Flat emission for 8-16 keV (25 kV))
- Operating conditions: 650mA, 20-40kV*
- Low power consumption: 26W (max)
- High power density: 5kW/mm²

(*) Voltage should be maintained lower to limit the effect of $k\alpha$ and $k\beta$ lines

The sample

The samples are powder pellets to be measured **in transmission**. The **divergent beam** shines the full sample. The beam enters the chamber through a **Kapton window**.

- Cellulose pellet
- Disk shaped (D=13 mm, h~1mm)
- Measured in transmission
- In air
- Single stage holder

Johann aberration degrades the focus and the energy resolution. Thanks to a double machinig process the **Johansson** surface lays perfectly on the Rowland circle, allowing for a **perfect focusing**.

Perfect Focusing

Double Machining process From LuxiumSolutions

The transmitted X-ray beam is scanned in energy by a **cylindrical Johansson Ge(nn0)** analyzer and **focused horizontally**.

- Ge(nn0)
- Size: 60x15 (HxV) mm²
- 2 motions: T_x^c , R_z^c
- Angular range: 25°-75°
- Johansson crystal (R=0.25m)
- Cylindrically bent (CBCA)
- In-plane focusing (no vertical focusing)

By exploiting the **n=2,4,6** reflections of the **same Ge(nn0)** crystal, the **whole spectrum** (5-15 keV) can be covered, and the energy resolution maintained **below 3 eV**.

Contributions to the total resolution:

- Geometric (source and analyzer size)
- Crystal intrinsic (Takagi-Taupin)

By exploiting the **n=2,4,6** reflections of the **same Ge(nn0)** crystal, the **whole spectrum** (5-15 keV) can be covered, and the energy resolution maintained **below 3 eV**.

Source contribution mostly depends on:

- Source in-plane size
- Bragg angle

$$\Delta \theta_s = -\frac{s_y}{R\sin\theta_B} + \tan\theta_B \left(\frac{s_y^2 + s_z^2}{2R^2\sin^2\theta_B}\right)$$

geom	intr	tot
2.591	1.105	2.628
0.861	0.698	0.861
0.409	0.535	0.409
0.180	0.485	0.180
	2.591 0.861 0.409 0.180	2.591 1.105 0.861 0.698 0.409 0.535 0.180 0.485

Using a **single analyzer** influences the **choice of source and detector**, the first due to working mostly at low Bragg angles, the second due focusing only in the scattering plane.

The detector

The detector was **custom** designed **at Politecnico di Milano (DEIB)**. It is a monolithic **SDD** module, devised with **rectangular** shape and **large active area**.

- Silicon Drift Detector (SDD)
- **2x4** rectangular array : 20x36 (HxV) mm²
- Large active area: 256 mm²
- 3 motions: T_x^D , T_y^D , R_z^D
- Peltier cooled to 5°C *
- High count rate: 10⁵ ph/s

(*) The Cu housing is water cooled to remove heat load from the mechanics.

Quaglia, R., et al. (2016). Nuclear Instruments and Methods in Physics Research, Section A, 824(449–451)

Crystal analyser :

- Translation (T_x^c) : 0 272 mm, Res: 100 (10) μ m
- Rotation (R_z^c) : 25° 75°, Res: 0.001 (0.0006) ° (1/16 M.S.)

Detector :

- Translations (T_x^D, T_y^D) : 0 272 mm, Res: 100 (10) μ m
- Rotation (R_z^D) : 30° -130°, Res: 0.1 (0.01) °

Radiation shielding :

Stainless steel chamber walls (thickness: 5 mm)

X-ray source Interlocks :

- Chamber pressure (p < 10⁻¹ mbar)
- Inserted sample holder
- x-ray source in place

Outline

Introduction

- The PolimiX group
- Motivations and Objectives
- Design criteria and targets

- Overview
- The chamber
- Rowland geometry
- The x-ray source
- The sample
- The crystal analyzer
- The detector
- Motors
- Radioprotection

Current situation

- Applications
- Ongoing works
- Program

Conclusions and Perspectives

Gample characteristics :

- Pure, highly concentrated
- Homogenous
- 3d 5d transition metals

Green chemistry and industrial applications :

- Energy: fuel cell and batteries
- Catalysis: MOFs
- Industrial chemistry: material recovery in industrial processes

Given States Fundamental physics:

valence states and cation coordination

Ongoing works

- Chamber and mechanics were tested in July 2024
- The instrument has been **delivered** at the Chemistry Department of the Politecnico di Milano in August 2024
- Soon it will be installed on a custom designed table with hoist
- Operation tests are ongoing: pumping, cooling and motor tests.

- **Ge crystal tests** at the ESRF:
- Source switch-on and radioprotection tests:
- Spectrometer **commissioning**:
- **First measurement** with real samples?

October 2024

November 2024

from November 2024

From February 2025 (???)

- A new table-top spectrometer for XANES and EXAFS in-lab measurements will be available at the Politecnico di Milano (hopefully) from Spring 2025
- The design was conceived to minimize costs, size and complexity compared to synchrotron instruments while ensuring minimum performances (10⁵ ph/s, < 3eV resolution)
- This is pursued by a combination of choices, e.g.: a single anlyser covering the full energy range, a μ-focus non-collimated x-ray source, a large SDD detector
- Samples candidates are powder compounds containing 3d and 5d transition metals (good homogeneity is required)

- In situ measurements (sample in vacuum)
- Multiple samples in a raw
- Upgrade for X-ray emission spectroscopy (XES)

Acknowledgements

The PolimiX group

- Prof. Giacomo Ghiringhelli
- Prof. Marco Moretti
- Dr. Matteo Corti
- Dr. Piero Florio

Given States Fundings:

- MUSA: Multilayer Urban Sustainability Action, NextGenerationUE, PNRR
- Regione Lombardia
- NEXTGAME projetc

Politecnico di Milano – Physics Department

- Antonio Di Natale
- Dr. Giuseppe Romano
- Dr. Francesco Sangalli

Politecnico di Milano – Chemistry Department

- Prof. Piero Macchi
- Prof. Giancarlo Terraneo
- Prof. Pierangelo Metrangolo
- Dr. Daniele Lucchini

Politecnico di Milano – Electronics Department

- Prof. Carlo Fiorini
- Dr. Giacomo Borghi
- Dr. Lorenzo Toscano

Cinel s.r.l.

- Dr. Riccardo Signorato
- Dr. Roberto Baruzzo
- Dr. Giulio Terracina
- Dr. Giuseppe Lamanna

Thank you!

Thanks for your attention!

Dr. Roberto Sant, Politecnico di Milano

Budapest, RCNS, 3 october 2024