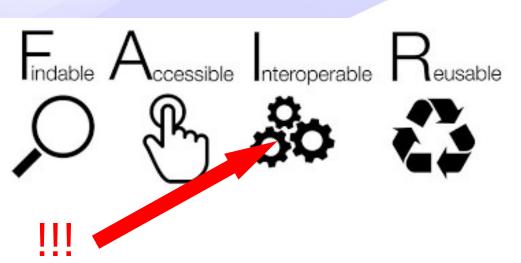
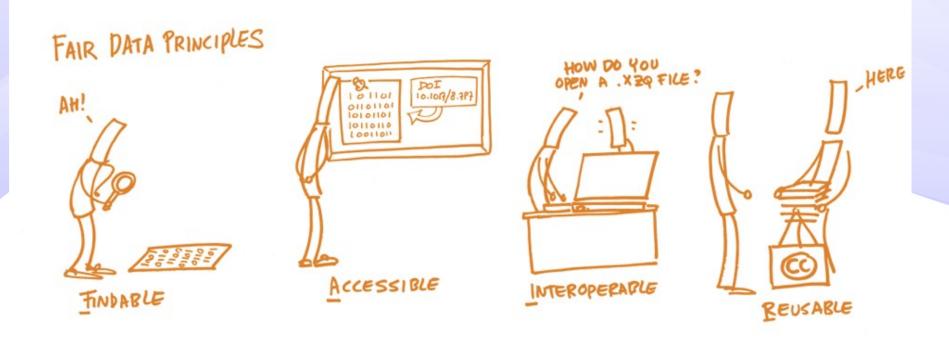


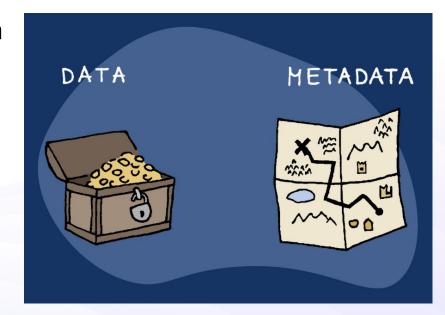
Standards-Compatible Data Storage in Laboratory-Based X-ray Instruments

András Wacha



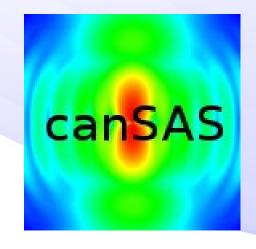
Motivation: Standardized Data Storage Formats


- "It's good that we have so many standards to choose from"
- The evolution of storage formats together with hardware and software
- The question of interoperability
- Without standardization:
 - N formats, N×(N-1) converters
 - New format: 2N new converters needed
- With a standard format agreed upon:
 - N formats, 2N converters.
 - New format: 2 new converters needed
- FAIR principles of open data


FAIR Principles in the Practice (https://www.openaire.eu/what-is-fair-data)

- Findable: "Discoverable with metadata, identifiable and locatable by means of a standard identification mechanism"
- Accessible: "Always available and obtainable; even if the data is restricted, the metadata is open"
- Interoperable: "Both syntactically parseable and semantically understandable, allowing data exchange and reuse between researchers, institutions, organizations or countries"
- Reusable: "Sufficiently described and shared with the least restrictive licences, allowing the widest reuse possible and the least cumbersome integration with other data sources"

Data and metadata, i.e., what to store


- Primary data: what we're most interested in
 - Typically non-scalar, possibly N-dim
 - Dependent variable as a function of the independent variable(s)
 - Fluorescence/absorption spectrum
 - Scattering pattern, scattering curve
 - Image
 - Raw vs. processed
- Metadata: describing the primary data
 - Information about:
 - The sample (name, composition, longer description...)
 - The instrument (name, state variables...)
 - Experimental conditions (temperature, in situ parameters)
 - Data reduction/evaluation procedures used
 - Ensuring correctness, reliability and reproducibility of the primary data

FAIR Data in Photon (and Neutron) Science

- Photon and neutron open science cluster: PaNOSC (https://www.panosc.eu)
 - Part of the European Open Science Cloud (EOSC)
 - PaNOSC project: EC-financed, 2018-2022
 - Representing European photon and neutron research infrastructures
 - PaN-data Europe Deliverable D2.1: Common policy framework on scientific data
 - a generic data management policy
 - can be tailored by facilities to their own needs
 - Recommends the NeXus/HDF5 format for storing data and metadata
- CanSAS (https://www.cansas.org)
 - "collective action for nomadic small angle scatterers"
 - Providing the small-angle scattering user community with shared tools and information
 - First meeting: 1998
 - N-dimensional data: NeXus-based (NXcanSAS) 2017-06-06 (announced)
 - 1D data: XML-based format
 - cansas1d (v1.0: 2009-05-12, v1.1: 2013-03-29)
 - Recommendation from early 2017 on: store 1D also as NxcanSAS

Home-brewn format

- Easy to implement if you are in a hurry, but usually not *future-proof*
- Not well thought-out (not all relevant aspects are stored)
- Difficult to extend (becomes "patchy", needs workarounds)
- Difficult to maintain (protection against hardware and software obsolescence)
- Choose from an already existing standard
 - Takes efforts to implement
 - Be kind to your "nomadic users"
 - Good chances that many pieces of software already support it
- Other requirements
 - **Open:** specification, algorithms, libraries freely available
 - Self-describing: data are labeled, intuitively stored
 - **Compression:** store large datasets, preferably in a seamless way
 - Fast read/write: high throughput
 - Fault tolerance / detection: redundancy, checksums
 - Straightforward API: easy to access the data in many programming languages (scientists are not programmers)

sensor

type

metadata

sensor

type

metadata

1 minute avg.

30 minute avg.

30 minute avg.

metadata

metadata

daily avg.

metadata

1 minute avg.

metadata

daily avg.

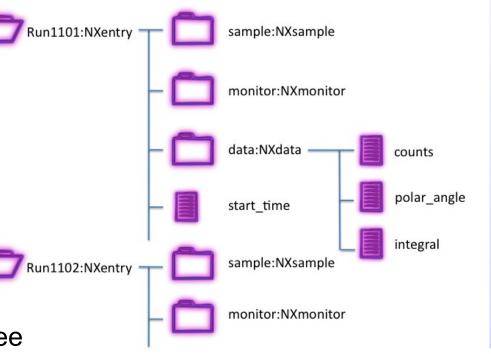
- Binary container format
- Cross-platform
- Many programming languages supported (C, C++, Java, Python...)

HDF5

metadata

- Tree structure
 - Groups (~ folders)
 - containers
 - N-dimensional datasets (~ files)
 - − N ≥ 0
 - Size, shape, data type
 - Symbolic or hard links
 - Pointers to the same data
 - External links
- Metadata (attributes) can be attached to groups and datasets
- Transparent IO filters
 - Compression
 - Shuffling
 - Fletcher32 checksum

site 1


metadata

site 2

metadata

The NeXus Format

- De facto standard in photon, neutron and muon sciences
 - PaNOSC, canSAS...
- Common data exchange format
- Aims
 - Container for raw data, associated with a scientific instrument
 - Container for processed data
- Based on the HDF5 format
 - HDF5 is only a container
 - standardized structure
 - Standardized nomenclature
- Aims:
 - Domain-specific rules for organizing and arranging data
 - Quick default visualization
 - Standard definitions that can be used to validate files
 - Governing body: NIAC
 - Nexus International Advisory Committee
 - Convenes every other year
 - https://www.nexusformat.org
 - J Appl Crystallogr (2015) 48(1) 301-305 (doi:10.1107/S1600576714027575)

NeXus Base Concepts I: NeXus base classes

- The "type" of a HDF5 group, stored in the "NX_class" attribute of the group
- Prescription of the possible fields (datasets) and attributes
 - Field types are also specified
- Corresponds to real-world objects (sample, instrument, data reduction step...)
- https://manual.nexusformat.org/classes/base_classes/index.html
- Example 1: NXentry (describe the measurement)
 - @NX_class="NXentry" (attribute)
 - title (NX_CHAR): title of the entry
 - start_time (NX_DATE_TIME): starting time of the measurement
 - end_time (NX_DATE_TIME): ending time of the measurement
 - program_name (NX_CHAR): the program used to generate this file
 - Sample (NXsample): a group describing the sample
 - Instrument (NXinstrument): a group describing the instrument
- Example 2: NXsample (describe the sample)
 - @NX_class="NXsample" (attribute)
 - name (NX_CHAR): name of the sample
 - chemical_formula (NX_CHAR): chemical formula
 - temperature (NX_FLOAT): temperature of the sample

ENT RY: (required) NXentry

NeXus Base Concepts II: Application definitions

- Base classes only define the nomenclature, not requirements
- Application definitions: domain-specific rules on obligatory and optional data
- Declared in the "definition" field of the NXentry
- Example: NXxas (X-ray absorption spectroscopy measurements)
- https://manual.nexusformat.org/classes/ applications/NXxas.html
- Lower case names: required name
- Upper case names: arbitrary name
- Path specification in the file:
 - By name:
 - entry145/vonhamos/xraygenerator/name
 - Using NXclass attributes:
 - Nxentry/Nxinstrument/Nxsource/name
- Multiple methods (e.g. raw SAXS and processed SAXS): NXsubentry

@entry: (required) NX_CHAR

▼ NeXus convention is to use "entry1", "entry2",

NeXus convention is to use "entryl", "entry2", ... for analysis software to

title: (required) <u>NX_CHAR</u> <u>←</u>

start_time: (required) <u>NX_DATE_TIME</u> ←

definition: (required) <u>NX_CHAR</u> <u>←</u>

• Official NeXus NXDL schema to which this file conforms ...

INSTRUMENT: (required) NXinstrument 🛥

SOURCE: (required) NXsource ←

type: (required) <u>NX_CHAR</u> <u>⇔</u>

name: (required) <u>NX_CHAR</u> 🖽

probe: (required) <u>NX_CHAR</u> ⇔

Obligatory value: x - ray

monochromator: (required) <u>NXmonochromator</u> ڟ

energy: (required) NX_FLOAT (Rank: 1, Dimensions: [nP]) ∈

incoming_beam: (required) NXdetector ↔

data: (required) NX_NUMBER (Rank: 1, Dimensions: [nP]) ∈

absorbed_beam: (required) NXdetector ⇔

data: (required) NX_NUMBER (Rank: 1, Dimensions: [nP]) 🚍

This data corresponds to the sample signal.

SAMPLE: (required) NXsample ∈

name: (required) <u>NX_CHAR</u> <u>⇔</u>

Descriptive name of sample

MONITOR: (required) NXmonitor 🖨

mode: (required) <u>NX_CHAR</u> <u>←</u>

► Count to a preset value based on either clock time (timer) ...

NeXus Base Concepts III: Contributed definitions

- Tentative, suggested extensions to the NeXus specification
- Proposed by the community
- Not yet standardized
- Both base classes and application definitions
- Example fields:
 - Optical spectroscopy
 - Multi-dimensional photoemission spectroscopy
 - Atom probe microscopy
 - Electron microscopy
- Curated, commented on and finally incorporated into the NeXus standard by the NIAC

NeXus Base Concepts IV: Default Visualization

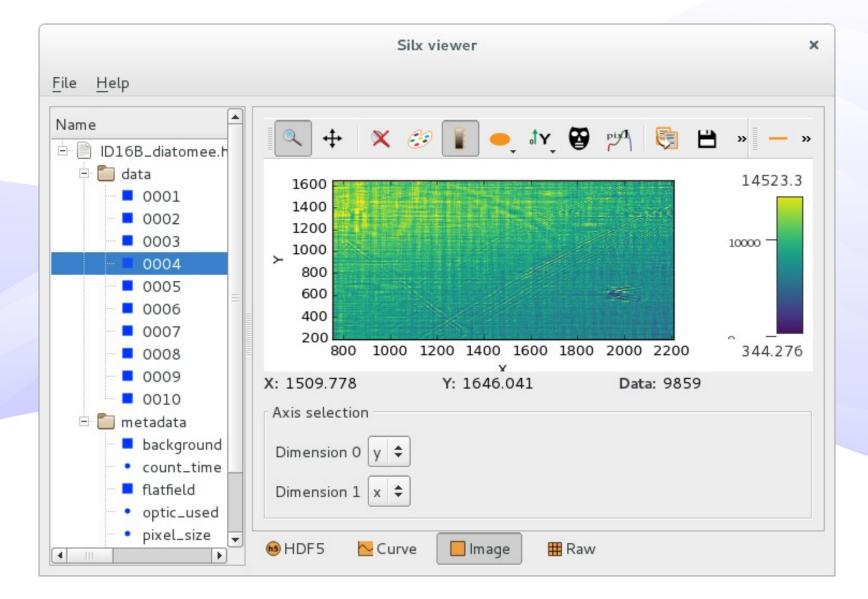
- Each measurement should have a default visualization...
- ... which should be declared in the data file
- The NXdata class
 - "Encapsulates all the information required for a set of data to be plotted"
 - Signals: dependent variables (1- or more dimensions)
 - Default signal: "signal" attribute
 - Axes: independent variables (typically 1D, but can be more)
 - Names freely chosen (but *cf* application definitions)
 - https://manual.nexusformat.org/classes/base_classes/NXdata.html

```
• Example:
```

```
data: NXdata
  @signal = "data"
  @axes = ["x", "y"]
  data: float[10, 20]
  x: float[10]
  y: float[20]
```

```
data: NXdata
  @signal = "data"
  @axes = ["x", "y"]
  @x_indices = 0
  @y_indices = 1
  data: float[10, 20]
  x: float[10]
  y: float[20]
```

More complex NXdata

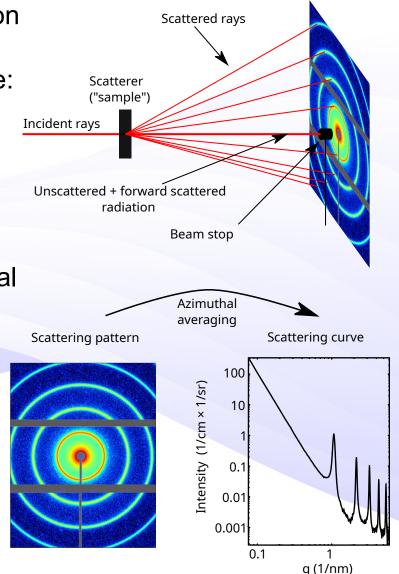

Multi-dimensional data, e.g., scans

```
data:NXdata
  @signal = "data"
  @auxiliary signals = ["data2", "data3"]
  @axes = ["x", "y", "energy", "wavelength"]
  Qx indices = 0
  @y indices = 1
  energy indices = 2
  @wavelength indices = 2
                                data:NXdata
  data: float[10, 20, 30]
  x: float[10]
  y: float[20]
  energy: float[30]
  wavelength: float[30]
  data2: float[10, 20, 30]
  data3: float[10, 20, 30]
```

```
@signal = "absorption"
@axes = ["xpos", "ypos", "energy"]
@xpos_indices = [0, 1, 2]
@ypos_indices = [0,1,2]
@energy_indices = 2
absorption: float[10, 20, 30]
xpos: float[10, 20, 30]
ypos: float[10, 20, 30]
energy: float[30]
absorption_errors: float[10, 20, 30]
xpos_errors: float[10, 20, 30]
```

NeXus utilities – Silx view

Displays HDF5 tree and the default (customizable) plot
 https://www.silx.org


Other NeXus utilities: programming & whatnot

- Reading and writing in Python
 - h5py (https://www.h5py.org): HDF5 wrappers for Python
 - PyTables (https://www.pytables.org): alternate HDF5 wrappers, sposnored by NUMFOCUS (Numpy, Scipy & Co.)
 - NeXpy (https://nexpy.github.io/nexpy/): high-level Python interface (+ GUI)
- Validation + other utilities
 - Punx (https://github.com/prjemian/punx)
 - NeXus command-line utilities: nxbrowse, nxconvert, nxdir...
- Data analysis programs supporting NeXus files:
 - DAVE (https://www.ncnr.nist.gov/dave/): for inelastic neutron scattering
 - DAWN (https://www.dawnsci.org): generic visualization, domain-specific processing
 - Mantid (http://mantidproject.org): high-performance computing on neutron and muon data
 - PyMCA (https://pymca.sourceforge.net): X-ray fluorescence data analysis
 - ... (see https://manual.nexusformat.org/utilities.html)

How We Store NeXus Files in the CREDO System?

SAXS data

- Modern SAXS measurements: 2D position sensitive detectors
- Isotropic (unoriented, powder, ...) sample: dependence only on q=|q|.
 - Azimuthal average → radial scattering curve ("intensity vs. q")
- Anisotropic scattering patterns:
 - Azimuthal averages in sectors
 - Radial average in an annulus: azimuthal scattering curve ("intensity vs. φ")
- Typical detector format: ~ 4-9 Mpixel
 - File size ~ 30-50 Mbyte
- Data reduction
 - External and internal background
 - Geometrical corrections
 - Normalization by exposure time and beam intensity
 - Correct for X-ray absorption by the sample

Storing NeXus files

- Application definitions:
 - Raw data: NXsas
 - Processed data: home-brewn (moving to NXcansas)
- https://nexdatas.github.io
 - Developed at DESY
 - A set of Tango servers:
 - NeXus file writer
 - Configuration server for NeXus file writer
 - Component selector
 - GUI
 - Component designer
 - Sardana/Taurus extensions
 - Macro GUI
 - Sardana Recorder which uses the Tango servers
- In-house developed Sardana macros
 - nxsbegin ct nxsend: most metadata written while the exposure is being made

En	vi	ronment cycle #1
	S	et up
	D	AQ loop
		Backgrounds & references
		Sample #1
		Sample #2
En	vi	ronment cycle #2
	S	et up
	D	AQ loop

Data storage strategy

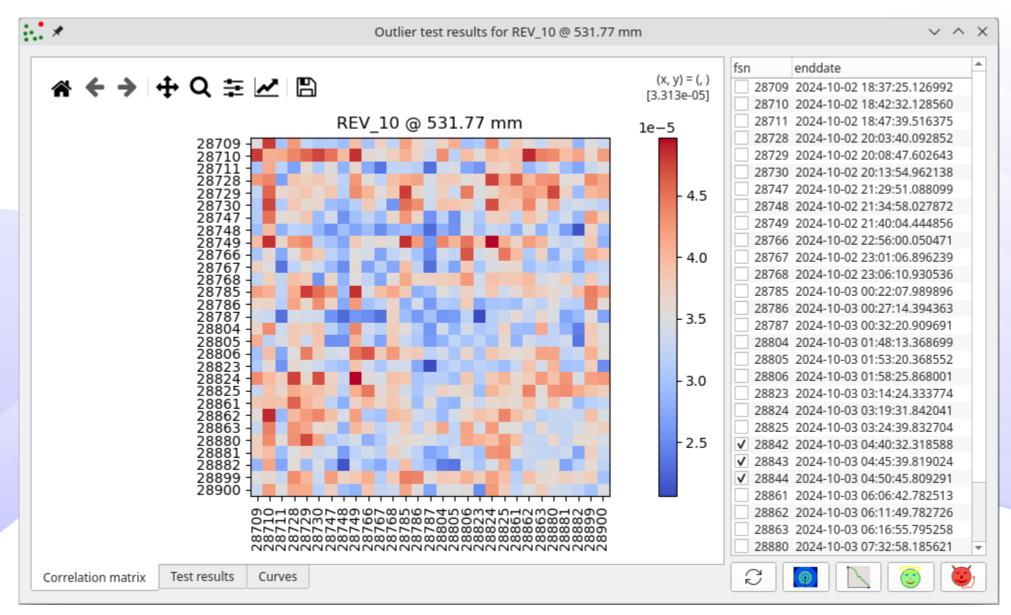
- File sequence: <prefix>_<file_sequence_index>.<extn>
 - Examples: crd_52133.cbf (raw detector image), crd_52133.nxs (NeXus file, separate NXsubentry for raw and processed)
 - Prefix: independently counted images, based on the use (we use the same 2D detector for everything!):
 - scn: scan measurements
 - tra: transmission measurements
 - crd: "production", true measurements
 - tst: test shots
 - gsx: GISAXS
 - A SQL database is also written (raw; updated with processed)
 - Basis for <u>F</u>indability later on
- End result: a single dataset for each sample
 - ? time-evolution ?
 - Transitioning to NXcansas in the near future

Data post-processing GUI

■ Load a range of a file sequence

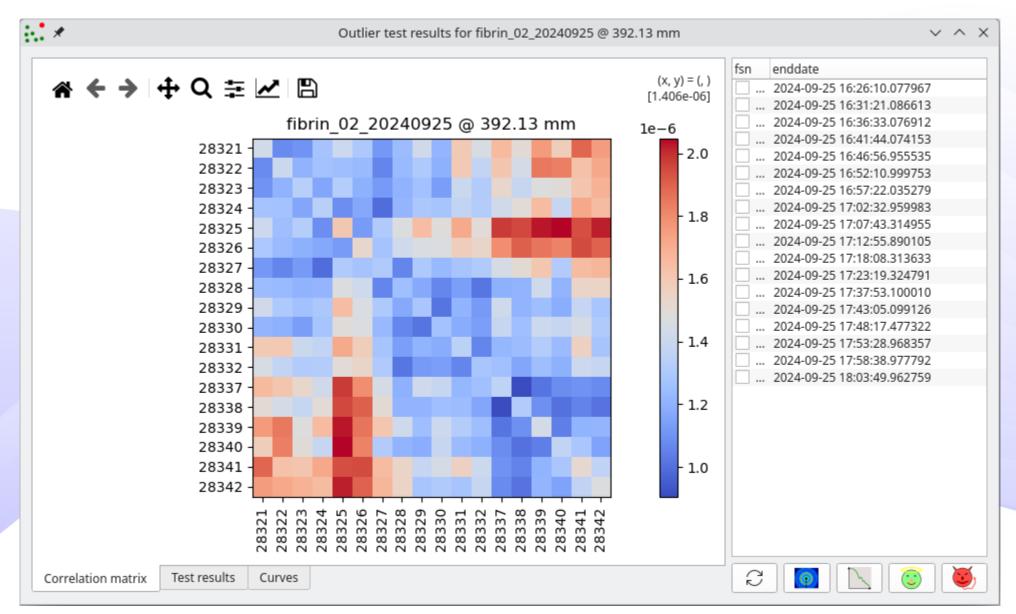
м 🗶		CREDO Data Processi	ng :: 10_REV_D	PPC_Judith_20	241002.cpt4.nxs	~ ^ >
Data root:	/home/labuser/cre	do_data				🔁 Year: 2024 💌
ile sequer	ice range					Processing tasks:
Start	End	Description	Load only th	ese s Add name	suffix +	
28693	28900				<u>ک</u> ۲	Load metadata
						Averaging
						Subtraction
						Merging
Project	Ketadata	💷 Averaging	Subtraction	>> Merging	k Results	

Analyze metadata


n	title	distance	enddate	project	thickness	transmission	tem
28693	Dark	531.77 ± 0.17	2024-10-02 17:23	Inhouse 23/07	1.000 ± 0.000	0.0000 ± 0.0000	25.0
28694	Empty_Beam	531.77 ± 0.17	2024-10-02 17:26	Inhouse 23/07	1.000 ± 0.000	1.0000 ± 0.0000	25.0
28695	Glassy_Carbon	528.27 ± 0.17	2024-10-02 17:28	Inhouse 23/07	0.100 ± 0.000	0.5467 ± 0.0032	25.0
28696	AgBeh_SBA15_ca	531.77 ± 0.17	2024-10-02 17:30	Inhouse 23/07	0.118 ± 0.001	0.2439 ± 0.0023	25.0
28697	PBS	531.77 ± 0.17	2024-10-02 17:35	Inhouse 23/07	0.166 ± 0.001	0.1158 ± 0.0017	25.0
28698	PBS	531.77 ± 0.17	2024-10-02 17:40	Inhouse 23/07	0.166 ± 0.001	0.1158 ± 0.0017	25.0
28699	PBS	531.77 ± 0.17	2024-10-02 17:46	Inhouse 23/07	0.166 ± 0.001	0.1158 ± 0.0017	25.0
28700	REV_1	531.77 ± 0.17	2024-10-02 17:51	Inhouse 23/07	0.140 ± 0.001	0.1826 ± 0.0019	25.0
28701	REV_1	531.77 ± 0.17	2024-10-02 17:56	Inhouse 23/07	0.140 ± 0.001	0.1826 ± 0.0019	25.0
28702	REV_1	531.77 ± 0.17	2024-10-02 18:01	Inhouse 23/07	0.140 ± 0.001	0.1826 ± 0.0019	25.0
28703	REV_2	531.77 ± 0.17	2024-10-02 18:06	Inhouse 23/07	0.136 ± 0.000	0.1813 ± 0.0015	25.0
28704	REV_2	531.77 ± 0.17	2024-10-02 18:11	Inhouse 23/07	0.136 ± 0.000	0.1813 ± 0.0015	25.0
28705	REV_2	531.77 ± 0.17	2024-10-02 18:16	Inhouse 23/07	0.136 ± 0.000	0.1813 ± 0.0015	25.0
28706	REV_5_extr	531.77 ± 0.17	2024-10-02 18:22	Inhouse 23/07	0.121 ± 0.001	0.2323 ± 0.0023	25.0
28707	REV_5_extr	531.77 ± 0.17	2024-10-02 18:27	Inhouse 23/07	0.121 ± 0.001	0.2323 ± 0.0023	25.0
28708	REV_5_extr	531.77 ± 0.17	2024-10-02 18:32	Inhouse 23/07	0.121 ± 0.001	0.2323 ± 0.0023	25.0
28709	REV_10	531.77 ± 0.17	2024-10-02 18:37	Inhouse 23/07	0.123 ± 0.001	0.2180 ± 0.0016	25.0
28710	REV_10	531.77 ± 0.17	2024-10-02 18:42	Inhouse 23/07	0.123 ± 0.001	0.2180 ± 0.0016	25.0
28711	REV_10	531.77 ± 0.17	2024-10-02 18:47	Inhouse 23/07	0.123 ± 0.001	0.2180 ± 0.0016	25.0
28712	Dark	531.77 ± 0.17	2024-10-02 18:49	Inhouse 23/07	1.000 ± 0.000	0.0000 ± 0.0000	25.0
28713	Empty_Beam	531.77 ± 0.17	2024-10-02 18:52	Inhouse 23/07	1.000 ± 0.000	1.0000 ± 0.0000	25.0
28714	Glassy_Carbon	528.27 ± 0.17	2024-10-02 18:54	Inhouse 23/07	0.100 ± 0.000	0.5467 ± 0.0032	25.0
28715	AgBeh_SBA15_ca	531.77 ± 0.17	2024-10-02 18:56	Inhouse 23/07	0.118 ± 0.001	0.2439 ± 0.0023	25.0
28716	PBS	531.77 ± 0.17	2024-10-02 19:01	Inhouse 23/07	0.166 ± 0.001	0.1158 ± 0.0017	25.0
							Þ

Average exposures corresponding to the same sample and same sample-todetector distance

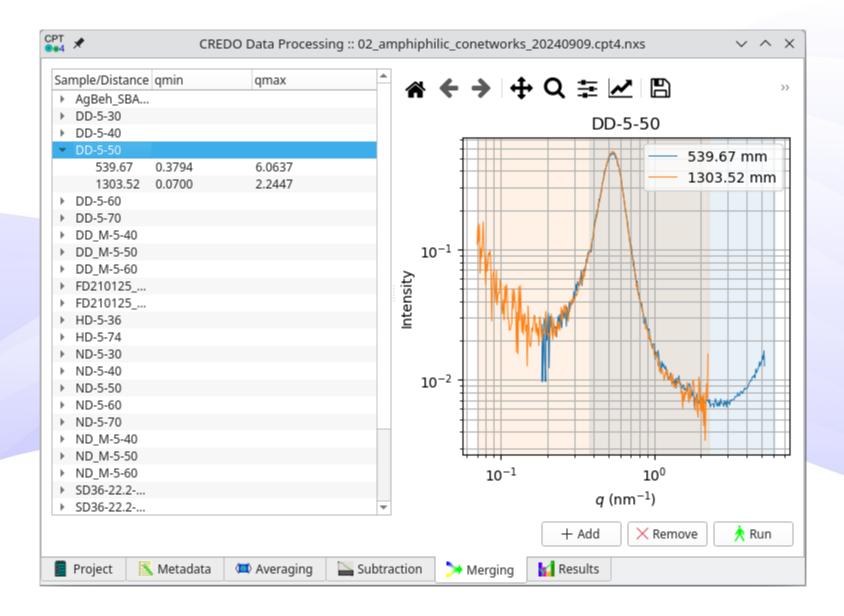
Sample	Distance	Good	All	Status		
AgBeh_SBA15_capillary_20231130	531.77 mm	11	11	Processing done		Ī
Dark	531.77 mm	10	11	Processing done		
Empty_Beam	531.77 mm	10	11	Processing done		
Glassy_Carbon	528.27 mm	11	11	Processing done		
PBS	531.77 mm	28	33	Loading exposures 22/33		
REV_1	531.77 mm	28	33	Loading exposures 19/33		
REV_10	531.77 mm	29	32	Loading exposures 19/32		
REV_2 REV_5_extr	531.77 mm	29	33	Loading exposures 19/33		
					ор	


Data post-processing GUI

Filter exposures with artefacts (Pilatus chip flashes), assess sample stability

Data post-processing GUI

Filter exposures with artefacts (Pilatus chip flashes), assess sample stability



Subtract background (optional)

[⊺] ⊀	CR	EDO Data Processi	ng :: 10_REV_[DPPC_Judith_202	241002.cpt4.nxs	~ ^
Sample	Background	Scaling method	Parameters			
REV_1	PBS	None	-			
REV_2	PBS	None				
REV_5_extr	PBS	None				
REV_10	PBS	None				
					+ Add × Remove	📩 Run

Data post-processing GUI

Merge curves from multiple sample-to-detector distances

Present results: draw curves, patterns, analyze anisotropy, export to various formats

Sample	 Distance 	Category	Count	Total time	Shapiro test	Schilling test	Qu
AgBeh_SBA15_capillary_202	31130 531.77	sample	11	00:22:00.0	0.775	0.999	1
Dark	531.77	sample	10	00:20:00.0	0.616	0.465	0.2
Empty_Beam	531.77	sample	10	00:20:00.0	0.295	0.465	0.3
Glassy_Carbon	528.27	sample	11	00:22:00.0	0.955	0.999	0.8
PBS	531.77	sample	28	02:20:00.0	0.991	0.996	0.9
REV_1	531.77	sample	28	02:20:00.0	0.648	0.597	0.0
REV_1-PBS	531.77	subtracted	28	02:20:00.0			
REV_10	531.77	sample	29	02:25:00.0	0.72	0.346	0.6
REV_10-PBS	531.77	subtracted	29	02:25:00.0			
REV_2	531.77	sample	29	02:25:00.0	0.217	0.611	1
REV_2-PBS	531.77	subtracted	29	02:25:00.0			
REV_5_extr	531.77	sample	28	02:20:00.0	0.144	0.882	0.9
Outlier te	est	Pattern		Cur	ve	Anisotropy	r
how: e ^{-µd} Transmiss		Pattern	t	Cur		Anisotropy	
how:	sion	Time budge	t		/ Flux	Anisotropy Report	,

Conclusions

- Storage format for in-house
 - Home-brewn might be okay on the short term
 - Standardized format on the long term
- User facility \rightarrow requirement of interoperability (and F+A+R, too)
- Completeness vs. simplicity
- Find the most agreed-upon data format for your domain
 - SAXS: NeXus, canSAS
 - XAS: NeXus?
 - HDF5 should be a good general choice
- Exporting processed data to other formats
 - "No matter how good a data storage format you adapt, most users will ask for ASCII text files"
 - "... or Excel workbooks."

Thank you for your attention (again)!

- Research Group for Biological Nanochemistry, HUN-REN Research Centre for Natural Sciences (https://bionano.ttk.hu/biological-nanochemistry)
- CREDO SAXS laboratory (https://credo.ttk.hu)

